
Pushdown Systems with

Stack Manipulation

Yuya Uezato Yasuhiko Minamide

University of Tsukuba

ATVA 2013

Pushdown System(PDS)

PDS P is a structure (Q,Γ,∆):

• Q is a finite set of control locations,

• Γ is a finite set of stack alphabets,

• ∆ ⊆ Q× (Γ× Γ∗)×Q is a finite set of transition rules.

⋄ A pair of control location and stack is called configuration,

⋄ Conf (P) = Q× Γ∗ are configurations of P.

⋄ Transition relation → ⊆ Conf (P) × Conf (P) :

〈
p,

γ

v

〉
→

〈
q,

w

v

〉
if p

γ/w
−֒−−→ q ∈ ∆

Reachability problem of PDS

Reachability problem :

For a PDS P, configurations cinitial and cfinal ,
is cfinal reachable from cinitial in P ?

Decidability[Finkel et al., 1997, Bouajjani et al., 1997]

The reachability problem of PDS is decidable.

• The reachability problem of PDS is not only fundamental
problem, but also useful for software model checking.

• Extended pushdown systems that preserve decidability of
reachability problems have been introduced for reasoning
more complex systems.

Conditional Pushdown System [Esparza et al., 2003]

• Extending rules by regular expressions : p
γ/w
−֒−−→

R
q,

• R inspects the entire stack except the top.

Example: p
1/ε
−֒−→
1∗

q

• p

1

1

1

→ q
1

1
(∵

1

1
∈ 1∗)

• p
1

2
→ ✗ (∵ 2 6∈ 1∗)

Every conditional PDS is simulated by ordinary PDS and
reachability problem of conditional PDS is decidable.

Discrete Timed PDS[Abdulla et al., 2012b]

Timed PDS can modify the entire stack.

• (γ, α) ∈ Γ× Nω

≤m
: α is the age of the symbol γ

Nω
≤m = {n ∈ N | n ≤ m} ∪ {ω}

• delay transitions increment the age of every symbol

(b, 1)
push
−−−→

(a, 0)

(b, 1)

delay
−−−−→

(a, 1)

(b, 2)

delay
−−−−→

(a, 2)

(b, 3)
pop
−−→ (b, 3)

Every timed PDS is simulated by ordinary PDS and
reachability problem of timed PDS is decidable.

Contribution

1 We introduce an extended PDS, TrPDS
• TrPDS modifies the entire stack by using transduction

• Conditional PDS and Timed PDS are simple instances of
TrPDS

2 We show that finite TrPDS can be simulated by PDS
• TrPDS is finite if the closure of transductions appearing in
the transitions is finite.

• as a corollary, we show the reachability problem of finite
TrPDS is decidable.

Outline

1 TrPDS : Extending PDS with transductions

2 Simulating TrPDS by ordinary PDS

3 Decidability of reachability problem of finite TrPDS

Transducer and Transduction

(Letter-to-letter) Transducer
Finite automaton over Γ︸︷︷︸

INPUT

× Γ︸︷︷︸
OUTPUT

, t = (S,Γ, E, i, F).

states

alphabets

transitions

initial state

accepting states

Transducer and Transduction

(Letter-to-letter) Transducer
Finite automaton over Γ︸︷︷︸

INPUT

× Γ︸︷︷︸
OUTPUT

, t = (S,Γ, E, i, F).

• p
σ | σ′

−−−−→ q ∈ E ⊆ S × (Γ× Γ)× S,

• The language of t is L(t) ⊆ (Γ× Γ)∗,

• Each transducer t defines function t ∈ Γ∗ → P(Γ∗).

states

alphabets

transitions

initial state

accepting states

Transducer and Transduction

(Letter-to-letter) Transducer
Finite automaton over Γ︸︷︷︸

INPUT

× Γ︸︷︷︸
OUTPUT

, t = (S,Γ, E, i, F).

• p
σ | σ′

−−−−→ q ∈ E ⊆ S × (Γ× Γ)× S,

• The language of t is L(t) ⊆ (Γ× Γ)∗,

• Each transducer t defines function t ∈ Γ∗ → P(Γ∗).

t =

a|a a|b

b|b

at = {a, b}
aat = {aa, ab, ba, bb}
bt = ∅
...

states

alphabets

transitions

initial state

accepting states

Transducer and Transduction

(Letter-to-letter) Transducer
Finite automaton over Γ︸︷︷︸

INPUT

× Γ︸︷︷︸
OUTPUT

, t = (S,Γ, E, i, F).

• p
σ | σ′

−−−−→ q ∈ E ⊆ S × (Γ× Γ)× S,

• The language of t is L(t) ⊆ (Γ× Γ)∗,

• Each transducer t defines function t ∈ Γ∗ → P(Γ∗).

t =

a|a a|b

b|b

a t = { a , b}

aat = {aa, ab, ba, bb}
bt = ∅
...

states

alphabets

transitions

initial state

accepting states

Transducer and Transduction

(Letter-to-letter) Transducer
Finite automaton over Γ︸︷︷︸

INPUT

× Γ︸︷︷︸
OUTPUT

, t = (S,Γ, E, i, F).

• p
σ | σ′

−−−−→ q ∈ E ⊆ S × (Γ× Γ)× S,

• The language of t is L(t) ⊆ (Γ× Γ)∗,

• Each transducer t defines function t ∈ Γ∗ → P(Γ∗).

t =

a|a a|b

b|b

a t = {a, b }

aat = {aa, ab, ba, bb}
bt = ∅
...

states

alphabets

transitions

initial state

accepting states

Transducer and Transduction

(Letter-to-letter) Transducer
Finite automaton over Γ︸︷︷︸

INPUT

× Γ︸︷︷︸
OUTPUT

, t = (S,Γ, E, i, F).

• p
σ | σ′

−−−−→ q ∈ E ⊆ S × (Γ× Γ)× S,

• The language of t is L(t) ⊆ (Γ× Γ)∗,

• Each transducer t defines function t ∈ Γ∗ → P(Γ∗).

t =

a|a a|b

b|b

at = {a, b}
a at = {aa, a b, ba, bb}

bt = ∅
...

states

alphabets

transitions

initial state

accepting states

Transducer and Transduction

(Letter-to-letter) Transducer
Finite automaton over Γ︸︷︷︸

INPUT

× Γ︸︷︷︸
OUTPUT

, t = (S,Γ, E, i, F).

• p
σ | σ′

−−−−→ q ∈ E ⊆ S × (Γ× Γ)× S,

• The language of t is L(t) ⊆ (Γ× Γ)∗,

• Each transducer t defines function t ∈ Γ∗ → P(Γ∗).

t =

a|a a|b

b|b

at = {a, b}
a a t = {aa, a b , ba, bb}

bt = ∅
...

states

alphabets

transitions

initial state

accepting states

Transducer and Transduction

(Letter-to-letter) Transducer
Finite automaton over Γ︸︷︷︸

INPUT

× Γ︸︷︷︸
OUTPUT

, t = (S,Γ, E, i, F).

• p
σ | σ′

−−−−→ q ∈ E ⊆ S × (Γ× Γ)× S,

• The language of t is L(t) ⊆ (Γ× Γ)∗,

• Each transducer t defines function t ∈ Γ∗ → P(Γ∗).

t =

a|a a|b

b|b

at = {a, b}
aat = {aa, ab, ba, bb}
b t = ∅

...

states

alphabets

transitions

initial state

accepting states

Transducer and Transduction

(Letter-to-letter) Transducer
Finite automaton over Γ︸︷︷︸

INPUT

× Γ︸︷︷︸
OUTPUT

, t = (S,Γ, E, i, F).

• p
σ | σ′

−−−−→ q ∈ E ⊆ S × (Γ× Γ)× S,

• The language of t is L(t) ⊆ (Γ× Γ)∗,

• Each transducer t defines function t ∈ Γ∗ → P(Γ∗).

(Length-preserving) Transduction
A function t is a transduction if t can be realized by a transducer.

states

alphabets

transitions

initial state

accepting states

PDS with stack manipulation(transductions)
TrPDS P is a structure (Q,Γ, T ,∆),

• T is a finite set of transductions,

• ∆ ⊆ Q× (Γ× Γ∗ × T)×Q is a finite set of transition rules.

∈

Transition rule p
γ/w | t
−֒−−−−−→ q ∈ ∆ derives a transition

〈
p,

γ

v

〉
→

〈
q,

w

v′

〉
if v′ ∈ vt

PDS with stack manipulation(transductions)
TrPDS P is a structure (Q,Γ, T ,∆),

• T is a finite set of transductions,

• ∆ ⊆ Q× (Γ× Γ∗ × T)×Q is a finite set of transition rules.

∈

Transition rule p
γ/w | t
−֒−−−−−→ q ∈ ∆ derives a transition

〈
p,

γ

v

〉
→

〈
q,

w

v′

〉
if v′ ∈ vt

Example : p
c/ε | t
−֒−−−→ q (aat = {aa, ab, ba, bb}, abt = ∅)

p

c

a

a

→

{
q

a

a
, q

a

b
, q

b

a
, q

b

b

}
, p

c

a

b

→ ∅

Example : Ordinary PDS

Ordinary PDS (Q,Γ,∆), TrPDS (Q,Γ, {1},∆′),

• 1 is the identity function.

γ1|γ1 + γ2|γ2 + · · · + γn|γn

Example : Ordinary PDS

Ordinary PDS (Q,Γ,∆), TrPDS (Q,Γ, {1},∆′),

• 1 is the identity function.

γ1|γ1 + γ2|γ2 + · · · + γn|γn

p
γ/w
−֒−−→ q ∈ ∆

derives

〈
p,

γ

v

〉
→

〈
q,

w

v

〉
p

γ/w |1
−֒−−−−−→ q ∈ ∆′

derives

〈
p,

γ

v

〉
→

〈
q,

w

v

〉

Example : Conditional PDS

Conditional PDS (Q,Γ,R,∆),

• R is a finite set of regular
expressions over Γ

TrPDS (Q,Γ, R̃,∆′),

• R̃ is copycat version of R

Example : Conditional PDS

Conditional PDS (Q,Γ,R,∆),

• R is a finite set of regular
expressions over Γ

1

2

1, 2

TrPDS (Q,Γ, R̃,∆′),

• R̃ is copycat version of R

1|1

2|2

1|1 + 2|2

R R̃

Example : Conditional PDS

Conditional PDS (Q,Γ,R,∆),

• R is a finite set of regular
expressions over Γ

1

2

1, 2

p
γ/w
−֒−−→
R

q ∈ ∆ and v ∈ R

derives

〈
p,

γ

v

〉
→

〈
q,

w

v

〉
.

TrPDS (Q,Γ, R̃,∆′),

• R̃ is copycat version of R

1|1

2|2

1|1 + 2|2

p
γ/w | R̃
−֒−−−−−→ q ∈ ∆′ and v ∈ R

derives

〈
p,

γ

v

〉
→

〈
q,

w

v

〉
.

R R̃

Example : Timed PDS

• Every timed PDS is an instance of TrPDS,
• because delay : Nω

≤m
→ Nω

≤m
is a transduction.

Example : Timed PDS

• Every timed PDS is an instance of TrPDS,
• because delay : Nω

≤m
→ Nω

≤m
is a transduction.

• The transduction delay is realized by a transducer D.

delay(n) =

{
n+ 1 if 0 ≤ n ≤ (m− 1)

ω if n = m or n = ω

0|1 + 1|2 + · · · + (m− 1)|m + m|ω + ω|ω

transducer D

TrPDS is very powerful
Minsky two-counter machine

• equips two counters, c0 and c1, of natural number.

• For both counters, we can increment, decrement, zero-test.

⋄ We encode two-counter machine into TrPDS.

TrPDS is very powerful
Minsky two-counter machine

• equips two counters, c0 and c1, of natural number.

• For both counters, we can increment, decrement, zero-test.

⋄ We encode two-counter machine into TrPDS.

Idea the value of c0 is encoded as the number of
alphabet 0 in TrPDS. Using padding alphabet �.

TrPDS is very powerful
Minsky two-counter machine

• equips two counters, c0 and c1, of natural number.

• For both counters, we can increment, decrement, zero-test.

⋄ We encode two-counter machine into TrPDS.

Idea the value of c0 is encoded as the number of
alphabet 0 in TrPDS. Using padding alphabet �.

c0++ is encoded as p
γ/γ 0 | 1l
−֒−−−−−−→ q

c0−− is encoded as p
γ/γ | d0
−֒−−−−−−−→ q

c0
?
= 0 is encoded as p

γ/γ | {�, 1}∗
−֒−−−−−−−−−−−−→ q

TrPDS is very powerful
Minsky two-counter machine

• equips two counters, c0 and c1, of natural number.

• For both counters, we can increment, decrement, zero-test.

⋄ We encode two-counter machine into TrPDS.

Idea the value of c0 is encoded as the number of
alphabet 0 in TrPDS. Using padding alphabet �.

c0++ is encoded as p
γ/γ 0 | 1l
−֒−−−−−−→ q

c0−− is encoded as p
γ/γ | d0
−֒−−−−−−−→ q

c0
?
= 0 is encoded as p

γ/γ | {�, 1}∗
−֒−−−−−−−−−−−−→ q

1|1 +�|�

0|�

0|0 + 1|1 +�|�d0

Main theorem : sufficient condition for simulation

Finite TrPDS
TrPDS P = (Q,Γ, T,∆) is finite ⇐⇒

the closure 〈T 〉 generated by
(
T, ;, 〈·, ·〉−1

)
is finite.

t1 ; t2 = {〈a, c〉 | 〈a, b〉 ∈ t1, 〈b, c〉 ∈ t2}

〈γ, γ ′〉−1
t = {〈w,w′〉 | 〈γw, γ ′w〉 ∈ t}

Main theorem : sufficient condition for simulation

Finite TrPDS
TrPDS P = (Q,Γ, T,∆) is finite ⇐⇒

the closure 〈T 〉 generated by
(
T, ;, 〈·, ·〉−1

)
is finite.

t1 ; t2 = {〈a, c〉 | 〈a, b〉 ∈ t1, 〈b, c〉 ∈ t2}

〈γ, γ ′〉−1
t = {〈w,w′〉 | 〈γw, γ ′w〉 ∈ t}

〈T 〉 is inductively defined as follows:

• ∀t ∈ T, t ∈ 〈T 〉

• ∀t1, t2 ∈ 〈T 〉, t1 ; t2 ∈ 〈T 〉

• ∀t ∈ 〈T 〉, ∀γ, γ ′ ∈ Γ, 〈γ, γ ′〉−1t ∈ 〈T 〉

Main theorem : sufficient condition for simulation

Finite TrPDS
TrPDS P = (Q,Γ, T,∆) is finite ⇐⇒

the closure 〈T 〉 generated by
(
T, ;, 〈·, ·〉−1

)
is finite.

t1 ; t2 = {〈a, c〉 | 〈a, b〉 ∈ t1, 〈b, c〉 ∈ t2}

〈γ, γ ′〉−1
t = {〈w,w′〉 | 〈γw, γ ′w〉 ∈ t}

Main theorem
If TrPDS P is finite, then P is simulated by ordinary PDS.

Fact (Please see our paper)

• Conditional and Timed PDS are finite TrPDS.

• CTPDS which equips inspecting(by regular

expression)-transition and delay-transition is finite TrPDS.

Overview

1 TrPDS : Extending PDS with transductions

2 Simulating TrPDS by ordinary PDS

3 Decidability of reachability problem of finite TrPDS

Simulating Timed PDS [Abdulla et al., 2012b]⋆

⋄ The key idea is accumulating effects of delay as elements of
the stack.

(b, 1)

simulated by

〈b, 1〉

• (γ, α) : α is the age of the symbol γ.

• 〈γ, β〉 : β is the count of accumulated effects.
• If 〈γ, β〉 is in the top of stack, β is the real age.

⋆ The minimal cost reachability problem in priced timed

pushdown systems P.A.Abdulla , M.F.Atig , J.Stenmen LATA’12

Simulating Timed PDS [Abdulla et al., 2012b]⋆

⋄ The key idea is accumulating effects of delay as elements of
the stack.

(b, 1)
push
−−−→

(a, 0)

(b, 1)

simulated by

〈b, 1〉
push
−−−→

〈a, 0〉

〈b, 1〉

• (γ, α) : α is the age of the symbol γ.

• 〈γ, β〉 : β is the count of accumulated effects.
• If 〈γ, β〉 is in the top of stack, β is the real age.

⋆ The minimal cost reachability problem in priced timed

pushdown systems P.A.Abdulla , M.F.Atig , J.Stenmen LATA’12

Simulating Timed PDS [Abdulla et al., 2012b]⋆

⋄ The key idea is accumulating effects of delay as elements of
the stack.

(b, 1)
push
−−−→

(a, 0)

(b, 1)
delay
−−−→

(a, 1)

(b, 2)

simulated by

〈b, 1〉
push
−−−→

〈a, 0〉

〈b, 1〉
delay
−−−→

〈a, 1〉

〈b, 1〉

• (γ, α) : α is the age of the symbol γ.

• 〈γ, β〉 : β is the count of accumulated effects.
• If 〈γ, β〉 is in the top of stack, β is the real age.

⋆ The minimal cost reachability problem in priced timed

pushdown systems P.A.Abdulla , M.F.Atig , J.Stenmen LATA’12

Simulating Timed PDS [Abdulla et al., 2012b]⋆

⋄ The key idea is accumulating effects of delay as elements of
the stack.

(b, 1)
push
−−−→

(a, 0)

(b, 1)
delay
−−−→

(a, 1)

(b, 2)
delay
−−−→

(a, 2)

(b, 3)

simulated by

〈b, 1〉
push
−−−→

〈a, 0〉

〈b, 1〉
delay
−−−→

〈a, 1〉

〈b, 1〉
delay
−−−→

〈a, 2〉

〈b, 1〉

• (γ, α) : α is the age of the symbol γ.

• 〈γ, β〉 : β is the count of accumulated effects.
• If 〈γ, β〉 is in the top of stack, β is the real age.

⋆ The minimal cost reachability problem in priced timed

pushdown systems P.A.Abdulla , M.F.Atig , J.Stenmen LATA’12

Simulating Timed PDS [Abdulla et al., 2012b]⋆

⋄ The key idea is accumulating effects of delay as elements of
the stack.

(b, 1)
push
−−−→

(a, 0)

(b, 1)
delay
−−−→

(a, 1)

(b, 2)
delay
−−−→

(a, 2)

(b, 3)
pop
−−→ (b, 3)

simulated by

〈b, 1〉
push
−−−→

〈a, 0〉

〈b, 1〉
delay
−−−→

〈a, 1〉

〈b, 1〉
delay
−−−→

〈a, 2〉

〈b, 1〉
pop
−−→ 〈b, 1 + 2〉

• (γ, α) : α is the age of the symbol γ.

• 〈γ, β〉 : β is the count of accumulated effects.
• If 〈γ, β〉 is in the top of stack, β is the real age.

⋆ The minimal cost reachability problem in priced timed

pushdown systems P.A.Abdulla , M.F.Atig , J.Stenmen LATA’12

Simulating Timed PDS [Abdulla et al., 2012b]⋆

⋄ The key idea is accumulating effects of delay as elements of
the stack.

(b, 1)
push
−−−→

(a, 0)

(b, 1)
delay
−−−→

(a, 1)

(b, 2)
delay
−−−→

(a, 2)

(b, 3)
pop
−−→ (b, 3)

simulated by

〈b, 1〉
push
−−−→

〈a, 0〉

〈b, 1〉
delay
−−−→

〈a, 1〉

〈b, 1〉
delay
−−−→

〈a, 2〉

〈b, 1〉
pop
−−→ 〈b, 1 + 2〉

• (γ, α) : α is the age of the symbol γ.

• 〈γ, β〉 : β is the count of accumulated effects.
• If 〈γ, β〉 is in the top of stack, β is the real age.
• When 〈γ, β〉 gets popped, β should be added to the

immediately lower element.

⋆ The minimal cost reachability problem in priced timed

pushdown systems P.A.Abdulla , M.F.Atig , J.Stenmen LATA’12

Simulating TrPDS by ordinary PDS

Simulated TrPDS (Q,Γ, T,∆)

γ

v

γ/w | t
−−−−−→

w

v′

Simulating PDS (Q,Γ ∪ 〈T 〉,∆′)

γ

v

APPLY
−−−−−→

w

t

v

Simulating TrPDS by ordinary PDS

Simulated TrPDS (Q,Γ, T,∆)

γ

v

γ/w | t
−−−−−→

w

v′

Simulating PDS (Q,Γ ∪ 〈T 〉,∆′)

γ

v

APPLY
−−−−−→

w

t

v

• This reflects one-step unfolding of t

• Consume γ and output γ′,

and put a continuation

• 〈γ, γ′〉
−1

t = {〈w,w′〉 | 〈γw, γ′w〉 ∈ t}

t

γ

v

UNFOLD
−−−−−−→

γ′

〈γ, γ′〉−1
t

v

Simulating TrPDS by ordinary PDS

Simulated TrPDS (Q,Γ, T,∆)

γ

v

γ/w | t
−−−−−→

w

v′

Simulating PDS (Q,Γ ∪ 〈T 〉,∆′)

γ

v

APPLY
−−−−−→

w

t

v

• This reflects one-step unfolding of t

• Consume γ and output γ′,

and put a continuation

• 〈γ, γ′〉
−1

t = {〈w,w′〉 | 〈γw, γ′w〉 ∈ t}

t

γ

v

UNFOLD
−−−−−−→

γ′

〈γ, γ′〉−1
t

v

• Two configurations are equivalent

• t1 was accumulated before t2

• t1 ; t2 = {〈a, c〉 | 〈a, b〉 ∈ t1, 〈b, c〉 ∈ t2}

t2

t1

v
COMPOSE
−−−−−−−→

t1 ; t2

v

Simulating Timed PDS by PDS with transduction

(a, 0)

(b, 1)

(a, 1)

(b, 2)

(a, 2)

(b, 3)

(b, 3)

(a, 0)

(b, 1)

(a, 1)

D

(b, 1)

(a, 2)

D

D

(b, 1)

D

D

(b, 1)
COMPOSE
−−−−−−−→

D ; D

(b, 1)
UNFOLD
−−−−−−→

(b, 3)

D ; D

delay

delay

pop

APPLY(delay)

APPLY(delay)

APPLY(pop)

Overview

1 TrPDS : Extending PDS with transductions

2 Simulating TrPDS by ordinary PDS

3 Decidability of reachability problem of finite TrPDS

Concretization of stack
Concretizing function

Obtaining stacks of TrPDS from a stack of simulating PDS.

‖ · ‖ : (Γ ∪ 〈T 〉)∗ → P(Γ∗)
‖ ε ‖ = { ε }
‖ γw ‖ = {γw′ | w′ ∈ ‖w ‖}

‖ tw ‖ = {w′
t | w′ ∈ ‖w‖}

Example∥∥∥∥∥∥∥∥

1

D

D

0

∥∥∥∥∥∥∥∥
=

1

2

• Two effects of delay D were accumulated

• By concretizing, we obtain the expected
stack∥∥∥∥∥∥∥∥∥

1

1̃∗

2

∥∥∥∥∥∥∥∥∥
= ∅

• Simulating PDS does not detect a
failure of application 1̃∗

• By concretizing, we notice a failure of
application

Simulation theorem

Concretization of stack
Obtaining stacks of TrPDS from a stack of simulating PDS.

‖ · ‖ : (Γ ∪ 〈T 〉)∗ → P(Γ∗)

Theorem (Simulation theorem)

For a given C ⊆ Q× Γ∗, post∗(C) = ‖Post∗(C)‖

• post∗(C) is the set of forward-reachable configurations from
C in (simulated) TrPDS,

• Post∗(C) is the set of forward-reachable configurations
from C in (simulating) PDS.

Calculating post∗(C)

We can effectively compute post ∗(C),

1 post∗(C) = ‖Post∗(C)‖ holds,

Calculating post∗(C)

We can effectively compute post ∗(C),

1 post∗(C) = ‖Post∗(C)‖ holds,

2 Post∗(C) is a regular set from reachability analysis for
ordinary PDS,

Calculating post∗(C)

We can effectively compute post ∗(C),

1 post∗(C) = ‖Post∗(C)‖ holds,

2 Post∗(C) is a regular set from reachability analysis for
ordinary PDS,

3 ‖Post∗(C)‖ is a regular set and effectively computable,
• ‖ · ‖ is a (not length-preserving) transduction

Calculating post∗(C)

We can effectively compute post ∗(C),

1 post∗(C) = ‖Post∗(C)‖ holds,

2 Post∗(C) is a regular set from reachability analysis for
ordinary PDS,

3 ‖Post∗(C)‖ is a regular set and effectively computable,
• ‖ · ‖ is a (not length-preserving) transduction

⇒ We can solve the reachability problem of finite TrPDS.

Conclusion and Future works

We have
• introduced extended pushdown system TrPDS in a
more general and uniform manner,

• Conditional and Timed PDSs and two-counter system
without input are instances of TrPDS

• shown finite TrPDS can be simulated by PDS,
• the reachability problem of finite TrPDS is decidable.
• as the result, we have clarified why conditional and timed

PDSs can be simulated by ordinary PDS.

Future works

• Proving the undecidability of checking finiteness of 〈T 〉

• the closure 〈T 〉 generated by
(
T, ;, 〈·, ·〉

−1

)

• Using rational transducers as stack manipulators rather
than letter-to-letter transducers

Finiteness of checking+homomorphism

TrPDS S = (Q,Γ, T,∆)
T = checking ⊎H

checking =
{
R̂ | R ∈ R

}

H is a finite set of homomorphism over Γ

Lemma (exchanging law)

h ; R̃ = h̃−1(R) ; h

We can reduce any composition sequences into the following
normal form:

(R̃1 ; · · · ; R̃m) ; (h1 ; · · · ; hn).

Another Applications

• We can use TrPDS to formalize a larger part of the
HTML5 parser specification more than the existing work:

Ref Reachability Analysis of the HTML5 Parser Specification

and Its Application to Compatibility

Testing.[Minamide and Mori, 2012]

• I think TrPDS is useful for pushdown-analysis:

Ref Introspective pushdown analysis of higher-order

programs [Earl et al., 2012]
Ref Concrete Semantics for Pushdown Analysis: The Essence of

Summarization[Johnson and Horn,]

• We have not yet adopted TrPDS to Dense Timed

PDS[Abdulla et al., 2012a].

Time complexity of reachability problem

PDS PTIME[Bouajjani et al., 1997,
Esparza et al., 2000]

Conditional PDS EXPTIME-complete[Esparza et al., 2003]

At least, from the result of Conditional PDS, time complexity
of reachability problem of TrPDS is EXPTIME-hard.
We cannot estimate the size of 〈T 〉 from T , so we have not
ingestigated the precise analysis.

Checking finiteness of T

We have shown undecidability of checking finiteness of the
closure (T, ;) by using the old result uniform halting

problem[Hughes and Selkow, 1981].

On the other hand, undecidability of checking finiteness of the
closure (T, ;, 〈·, ·〉−1) is not derived from undecidability of
checking finitenss of (T, ;).

Rational transducer
If we employ general transducer or transduction as stack
manipulator, then we should use transducer rather than
transduction to treat ε-transitions.

a|a a|b

ε|a

L(t) = { (ε, a), (ε, aa), (ε, aaa), . . . ,
(a, aa), (a, aaa), (a, aaaa), . . . ,
(a, ba), (a, baa), (a, baaa), . . . ,
(a, ab), (a, aab), (a, aaab), . . . , }

Abdulla, P. A., Atig, M. F., and Stenman, J. (2012a).
Dense-timed pushdown automata.
In LICS’12, pages 35–44. IEEE Computer Society.

Abdulla, P. A., Atig, M. F., and Stenman, J. (2012b).
The minimal cost reachability problem in priced timed
pushdown systems.
In Proceedings of the 6th international conference on

Language and Automata Theory and Applications,
LATA’12, pages 58–69, Berlin, Heidelberg. Springer-Verlag.

Bouajjani, A., Esparza, J., and Maler, O. (1997).
Reachability analysis of pushdown automata: Application
to model-checking.
In CONCUR ’97: Concurrency Theory, volume 1243 of
Lecture Notes in Computer Science, pages 135–150.

Earl, C., Sergey, I., Might, M., and Van Horn, D. (2012).
Introspective pushdown analysis of higher-order programs.

In Proceedings of the 17th ACM SIGPLAN international

conference on Functional programming, ICFP ’12, pages
177–188. ACM.

Esparza, J., Hansel, D., Rossmanith, P., and Schwoon, S.
(2000).
Efficient Algorithms for Model Checking Pushdown
Systems.
In CAV’00, volume 1855 of Lecture Notes in Computer

Science, pages 232–247. Springer Berlin Heidelberg.

Esparza, J., Kuc̆era, A., and Schwoon, S. (2003).
Model checking LTL with regular valuations for pushdown
systems.
Information and Computation, 186(2):355 – 376.

Finkel, A., Willems, B., and Wolper, P. (1997).
A direct symbolic approach to model checking pushdown
systems.
In INFINITY ’97, volume 9 of ENTCS, pages 27–37.

Hughes, C. E. and Selkow, S. M. (1981).

The finite power property for context-free languages.
Theoretical Computer Science, 15(1):111–114.

Johnson, J. and Horn, D. V.
Concrete semantics for pushdown analysis: The essence of
summarization.
Workshop on Higher-Order Program Analysis(HOPA).

Minamide, Y. and Mori, S. (2012).
Reachability Analysis of the HTML5 Parser Specification
and Its Application to Compatibility Testing.
In FM 2012: Formal Methods, volume 7436 of Lecture
Notes in Computer Science, pages 293–307.

	TrPDS : Extending PDS with transductions
	Simulating TrPDS by ordinary PDS
	Decidability of reachability problem of finite TrPDS

