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Pushdown System(PDS)

PDS P is a structure (Q,Γ,∆):

• Q is a finite set of control locations,

• Γ is a finite set of stack alphabets,

• ∆ ⊆ Q× (Γ× Γ∗)×Q is a finite set of transition rules.

⋄ A pair of control location and stack is called configuration,

⋄ Conf (P) = Q× Γ∗ are configurations of P.

⋄ Transition relation → ⊆ Conf (P) × Conf (P) :

〈
p,

γ

v

〉
→

〈
q,

w

v

〉
if p

γ/w
−֒−−→ q ∈ ∆



Reachability problem of PDS

Reachability problem :

For a PDS P, configurations cinitial and cfinal ,
is cfinal reachable from cinitial in P ?

Decidability[Finkel et al., 1997, Bouajjani et al., 1997]

The reachability problem of PDS is decidable.

• The reachability problem of PDS is not only fundamental
problem, but also useful for software model checking.

• Extended pushdown systems that preserve decidability of
reachability problems have been introduced for reasoning
more complex systems.



Conditional Pushdown System [Esparza et al., 2003]

• Extending rules by regular expressions : p
γ/w
−֒−−→

R
q,

• R inspects the entire stack except the top.

Example: p
1/ε
−֒−→
1∗

q

• p

1

1

1

→ q
1

1
(∵

1

1
∈ 1∗)

• p
1

2
→ ✗ (∵ 2 6∈ 1∗)

Every conditional PDS is simulated by ordinary PDS and
reachability problem of conditional PDS is decidable.



Discrete Timed PDS[Abdulla et al., 2012b]

Timed PDS can modify the entire stack.

• (γ, α) ∈ Γ× Nω

≤m
: α is the age of the symbol γ

Nω
≤m = {n ∈ N | n ≤ m} ∪ {ω}

• delay transitions increment the age of every symbol

(b, 1)
push
−−−→

(a, 0)

(b, 1)

delay
−−−−→

(a, 1)

(b, 2)

delay
−−−−→

(a, 2)

(b, 3)
pop
−−→ (b, 3)

Every timed PDS is simulated by ordinary PDS and
reachability problem of timed PDS is decidable.



Contribution

1 We introduce an extended PDS, TrPDS
• TrPDS modifies the entire stack by using transduction

• Conditional PDS and Timed PDS are simple instances of
TrPDS

2 We show that finite TrPDS can be simulated by PDS
• TrPDS is finite if the closure of transductions appearing in
the transitions is finite.

• as a corollary, we show the reachability problem of finite
TrPDS is decidable.



Outline

1 TrPDS : Extending PDS with transductions

2 Simulating TrPDS by ordinary PDS

3 Decidability of reachability problem of finite TrPDS
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PDS with stack manipulation(transductions)
TrPDS P is a structure (Q,Γ, T ,∆),

• T is a finite set of transductions,
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PDS with stack manipulation(transductions)
TrPDS P is a structure (Q,Γ, T ,∆),

• T is a finite set of transductions,

• ∆ ⊆ Q× (Γ× Γ∗ × T )×Q is a finite set of transition rules.

∈

Transition rule p
γ/w | t
−֒−−−−−→ q ∈ ∆ derives a transition

〈
p,

γ

v

〉
→

〈
q,

w

v′

〉
if v′ ∈ vt

Example : p
c/ε | t
−֒−−−→ q (aat = {aa, ab, ba, bb}, abt = ∅)

p

c

a

a

→

{
q

a

a
, q

a

b
, q

b

a
, q

b

b

}
, p

c

a

b

→ ∅



Example : Ordinary PDS

Ordinary PDS (Q,Γ,∆), TrPDS (Q,Γ, {1},∆′),

• 1 is the identity function.

γ1|γ1 + γ2|γ2 + · · · + γn|γn



Example : Ordinary PDS

Ordinary PDS (Q,Γ,∆), TrPDS (Q,Γ, {1},∆′),

• 1 is the identity function.

γ1|γ1 + γ2|γ2 + · · · + γn|γn

p
γ/w
−֒−−→ q ∈ ∆

derives

〈
p,

γ

v

〉
→

〈
q,

w

v

〉
p

γ/w |1
−֒−−−−−→ q ∈ ∆′

derives

〈
p,

γ

v

〉
→

〈
q,

w

v

〉



Example : Conditional PDS

Conditional PDS (Q,Γ,R,∆),

• R is a finite set of regular
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TrPDS (Q,Γ, R̃,∆′),

• R̃ is copycat version of R
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2
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• R̃ is copycat version of R

1|1
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Example : Conditional PDS

Conditional PDS (Q,Γ,R,∆),

• R is a finite set of regular
expressions over Γ

1

2

1, 2

p
γ/w
−֒−−→
R

q ∈ ∆ and v ∈ R

derives

〈
p,

γ

v

〉
→

〈
q,

w

v

〉
.

TrPDS (Q,Γ, R̃,∆′),

• R̃ is copycat version of R

1|1

2|2

1|1 + 2|2

p
γ/w | R̃
−֒−−−−−→ q ∈ ∆′ and v ∈ R

derives

〈
p,

γ

v

〉
→

〈
q,

w

v

〉
.

R R̃
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Example : Timed PDS

• Every timed PDS is an instance of TrPDS,
• because delay : Nω

≤m
→ Nω

≤m
is a transduction.

• The transduction delay is realized by a transducer D.

delay(n) =

{
n+ 1 if 0 ≤ n ≤ (m− 1)

ω if n = m or n = ω

0|1 + 1|2 + · · · + (m− 1)|m + m|ω + ω|ω

transducer D



TrPDS is very powerful
Minsky two-counter machine

• equips two counters, c0 and c1, of natural number.

• For both counters, we can increment, decrement, zero-test.

⋄ We encode two-counter machine into TrPDS.
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TrPDS is very powerful
Minsky two-counter machine

• equips two counters, c0 and c1, of natural number.

• For both counters, we can increment, decrement, zero-test.

⋄ We encode two-counter machine into TrPDS.

Idea the value of c0 is encoded as the number of
alphabet 0 in TrPDS. Using padding alphabet �.

c0++ is encoded as p
γ/γ 0 | 1l
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c0−− is encoded as p
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−֒−−−−−−−→ q

c0
?
= 0 is encoded as p

γ/γ | {�, 1}∗
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1|1 +�|�

0|�

0|0 + 1|1 +�|�d0



Main theorem : sufficient condition for simulation

Finite TrPDS
TrPDS P = (Q,Γ, T,∆) is finite ⇐⇒

the closure 〈T 〉 generated by
(
T, ;, 〈·, ·〉−1

)
is finite.

t1 ; t2 = {〈a, c〉 | 〈a, b〉 ∈ t1, 〈b, c〉 ∈ t2}

〈γ, γ ′〉−1
t = {〈w,w′〉 | 〈γw, γ ′w〉 ∈ t}
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Main theorem : sufficient condition for simulation

Finite TrPDS
TrPDS P = (Q,Γ, T,∆) is finite ⇐⇒

the closure 〈T 〉 generated by
(
T, ;, 〈·, ·〉−1

)
is finite.

t1 ; t2 = {〈a, c〉 | 〈a, b〉 ∈ t1, 〈b, c〉 ∈ t2}

〈γ, γ ′〉−1
t = {〈w,w′〉 | 〈γw, γ ′w〉 ∈ t}

Main theorem
If TrPDS P is finite, then P is simulated by ordinary PDS.

Fact (Please see our paper)

• Conditional and Timed PDS are finite TrPDS.

• CTPDS which equips inspecting(by regular

expression)-transition and delay-transition is finite TrPDS.
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Simulating Timed PDS [Abdulla et al., 2012b]⋆

⋄ The key idea is accumulating effects of delay as elements of
the stack.

(b, 1)
push
−−−→

(a, 0)

(b, 1)
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−−−→
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• (γ, α) : α is the age of the symbol γ.

• 〈γ, β〉 : β is the count of accumulated effects.
• If 〈γ, β〉 is in the top of stack, β is the real age.
• When 〈γ, β〉 gets popped, β should be added to the

immediately lower element.

⋆ The minimal cost reachability problem in priced timed

pushdown systems P.A.Abdulla , M.F.Atig , J.Stenmen LATA’12
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Simulating TrPDS by ordinary PDS

Simulated TrPDS (Q,Γ, T,∆)

γ

v

γ/w | t
−−−−−→

w

v′

Simulating PDS (Q,Γ ∪ 〈T 〉,∆′)

γ

v

APPLY
−−−−−→

w

t

v

• This reflects one-step unfolding of t

• Consume γ and output γ′,

and put a continuation

• 〈γ, γ′〉
−1

t = {〈w,w′〉 | 〈γw, γ′w〉 ∈ t}

t

γ

v

UNFOLD
−−−−−−→

γ′

〈γ, γ′〉−1
t

v



Simulating TrPDS by ordinary PDS

Simulated TrPDS (Q,Γ, T,∆)

γ

v

γ/w | t
−−−−−→

w

v′

Simulating PDS (Q,Γ ∪ 〈T 〉,∆′)

γ

v

APPLY
−−−−−→

w

t

v

• This reflects one-step unfolding of t

• Consume γ and output γ′,

and put a continuation

• 〈γ, γ′〉
−1

t = {〈w,w′〉 | 〈γw, γ′w〉 ∈ t}

t

γ

v

UNFOLD
−−−−−−→

γ′

〈γ, γ′〉−1
t

v

• Two configurations are equivalent

• t1 was accumulated before t2

• t1 ; t2 = {〈a, c〉 | 〈a, b〉 ∈ t1, 〈b, c〉 ∈ t2}

t2

t1

v
COMPOSE
−−−−−−−→

t1 ; t2

v



Simulating Timed PDS by PDS with transduction

(a, 0)

(b, 1)

(a, 1)

(b, 2)

(a, 2)

(b, 3)

(b, 3)

(a, 0)

(b, 1)

(a, 1)

D

(b, 1)

(a, 2)

D

D

(b, 1)

D

D

(b, 1)
COMPOSE
−−−−−−−→

D ; D

(b, 1)
UNFOLD
−−−−−−→

(b, 3)

D ; D

delay

delay

pop

APPLY(delay)

APPLY(delay)

APPLY(pop)
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Concretization of stack
Concretizing function

Obtaining stacks of TrPDS from a stack of simulating PDS.

‖ · ‖ : (Γ ∪ 〈T 〉)∗ → P(Γ∗)
‖ ε ‖ = { ε }
‖ γw ‖ = {γw′ | w′ ∈ ‖w ‖}

‖ tw ‖ = {w′
t | w′ ∈ ‖w‖}

Example∥∥∥∥∥∥∥∥

1

D

D

0

∥∥∥∥∥∥∥∥
=

1

2

• Two effects of delay D were accumulated

• By concretizing, we obtain the expected
stack∥∥∥∥∥∥∥∥∥

1

1̃∗

2

∥∥∥∥∥∥∥∥∥
= ∅

• Simulating PDS does not detect a
failure of application 1̃∗

• By concretizing, we notice a failure of
application



Simulation theorem

Concretization of stack
Obtaining stacks of TrPDS from a stack of simulating PDS.

‖ · ‖ : (Γ ∪ 〈T 〉)∗ → P(Γ∗)

Theorem (Simulation theorem)

For a given C ⊆ Q× Γ∗, post∗(C) = ‖Post∗(C)‖

• post∗(C) is the set of forward-reachable configurations from
C in (simulated) TrPDS,

• Post∗(C) is the set of forward-reachable configurations
from C in (simulating) PDS.
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Calculating post∗(C)

We can effectively compute post ∗(C),

1 post∗(C) = ‖Post∗(C)‖ holds,

2 Post∗(C) is a regular set from reachability analysis for
ordinary PDS,



Calculating post∗(C)

We can effectively compute post ∗(C),
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Calculating post∗(C)

We can effectively compute post ∗(C),

1 post∗(C) = ‖Post∗(C)‖ holds,

2 Post∗(C) is a regular set from reachability analysis for
ordinary PDS,

3 ‖Post∗(C)‖ is a regular set and effectively computable,
• ‖ · ‖ is a (not length-preserving) transduction

⇒ We can solve the reachability problem of finite TrPDS.



Conclusion and Future works

We have
• introduced extended pushdown system TrPDS in a
more general and uniform manner,

• Conditional and Timed PDSs and two-counter system
without input are instances of TrPDS

• shown finite TrPDS can be simulated by PDS,
• the reachability problem of finite TrPDS is decidable.
• as the result, we have clarified why conditional and timed

PDSs can be simulated by ordinary PDS.

Future works

• Proving the undecidability of checking finiteness of 〈T 〉

• the closure 〈T 〉 generated by
(
T, ;, 〈·, ·〉

−1

)

• Using rational transducers as stack manipulators rather
than letter-to-letter transducers



Finiteness of checking+homomorphism

TrPDS S = (Q,Γ, T,∆)
T = checking ⊎H

checking =
{
R̂ | R ∈ R

}

H is a finite set of homomorphism over Γ

Lemma (exchanging law)

h ; R̃ = h̃−1(R) ; h

We can reduce any composition sequences into the following
normal form:

(R̃1 ; · · · ; R̃m) ; (h1 ; · · · ; hn).



Another Applications

• We can use TrPDS to formalize a larger part of the
HTML5 parser specification more than the existing work:

Ref Reachability Analysis of the HTML5 Parser Specification

and Its Application to Compatibility

Testing.[Minamide and Mori, 2012]

• I think TrPDS is useful for pushdown-analysis:

Ref Introspective pushdown analysis of higher-order

programs [Earl et al., 2012]
Ref Concrete Semantics for Pushdown Analysis: The Essence of

Summarization[Johnson and Horn, ]

• We have not yet adopted TrPDS to Dense Timed

PDS[Abdulla et al., 2012a].



Time complexity of reachability problem

PDS PTIME[Bouajjani et al., 1997,
Esparza et al., 2000]

Conditional PDS EXPTIME-complete[Esparza et al., 2003]

At least, from the result of Conditional PDS, time complexity
of reachability problem of TrPDS is EXPTIME-hard.
We cannot estimate the size of 〈T 〉 from T , so we have not
ingestigated the precise analysis.



Checking finiteness of T

We have shown undecidability of checking finiteness of the
closure (T, ;) by using the old result uniform halting

problem[Hughes and Selkow, 1981].

On the other hand, undecidability of checking finiteness of the
closure (T, ;, 〈·, ·〉−1) is not derived from undecidability of
checking finitenss of (T, ;).



Rational transducer
If we employ general transducer or transduction as stack
manipulator, then we should use transducer rather than
transduction to treat ε-transitions.

a|a a|b

ε|a

L(t) = { (ε, a), (ε, aa), (ε, aaa), . . . ,
(a, aa), (a, aaa), (a, aaaa), . . . ,
(a, ba), (a, baa), (a, baaa), . . . ,
(a, ab), (a, aab), (a, aaab), . . . , }
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