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Abstract. We present synchronized recursive timed automata (SRTA)
that extend timed automata with a stack. Each frame of a stack is
rational-valued clocks, and SRTA synchronously increase the values of
all the clocks within the stack. Our main contribution is to show that
the reachability problem of SRTA is ExpTime-complete. This decidabil-
ity contrasts with the undecidability for recursive timed automata (RTA)
introduced by Trivedi and Wojtczak, and Benerecetti et al. Unlike SRTA,
the frames below the top are frozen during the computation at the top
frame in RTA.
Our construction of the decidability proof extends the region abstrac-
tion for dense timed pushdown automata (TPDA) of Abdulla et al. to
accommodate together diagonal constraints and fractional constraints of
SRTA. Since SRTA can be seen as an extension of TPDA with diago-
nal and fractional constraints, our result enlarges the decidable class of
pushdown-extensions of timed automata.

1 Introduction

The paper presents a new pushdown-extension of timed automata synchronized
recursive timed automata (SRTA), and we study its expressiveness and the de-
cidability of the reachability problem. Timed automata are a model of real-time
systems, and recently several pushdown-extensions of timed automata have been
introduced [12, 3, 1, 8]. Among these pushdown-extensions, our formalization of
SRTA has novel constraints fractional constraints—formulae of the form {x} = 0
and {x} < {y}—for checking fractional parts of clocks. These fractional con-
straints play important roles. First, fractional constraints enlarge the language
class of (decidable) pushdown-extensions of timed automata timed pushdown
automata (TPDA) of Abdulla et al. [1] and TPDA with diagonal constraints of
Clemente and Lasota [8]. Indeed, we show that the following SRTA language Lex
cannot be recognized by any TPDA or TPDA with diagonal constraints because
of lack of fractional constraints:

Lex , {(a, t1)(a, t2) . . . (a, tn)(b, t′n) . . . (b, t′2)(b, t′1) : t′i − ti ∈ N} .
Next, fractional constraints are needed to achieve the theoretical result: From
a given SRTA, we can remove diagonal constraints—formulae of the form x −
y = 1—while preserving the language. Removal of diagonal constraints is one of
important results in the theory of timed automata [2, 4], and recently Clemente
and Lasota showed that in the context of TPDA [8].
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Timed automata are a model of real-time systems that includes rational-
valued clocks where a configuration 〈q, η〉 is a pair of a control location q and
a clock valuation η : X → Q+ from clocks to the nonnegative rationals. In
timed automata, timed transitions evolve the values of all the clocks at the same
rate: 〈q, η〉 δ 〈q, η + δ〉. Despite the unboundedness and denseness of rationals,
the reachability problem of timed automata was shown decidable by the region
abstraction technique in [2].

The two equivalent models, recursive timed automata (RTA) and timed recur-
sive state machines, were independently introduced by Trivedi and Wojtczak [12]
and Benerecetti et al. [3]. A configuration of RTA 〈q, 〈γ1, η1〉 . . . 〈γn, ηn〉〉 is a pair
of a location q and a stack where each frame is a pair 〈γi, ηi〉 of a symbol γi and a
valuation ηi : X → Q+. In RTA, timed transitions evolve the values of the clocks
only at the top frame: 〈q, 〈γ1, η1〉 . . . 〈γn, ηn〉〉 δ 〈q, 〈γ1, η1〉 . . . 〈γn, ηn + δ〉〉. Un-
fortunately, the reachability problem of RTA is undecidable because RTA can
simulate two-counter machines [12, 3].

Abdulla et al. introduced dense timed pushdown automata (TPDA) [1], and
recently Clemente and Lasota extended TPDA to allow diagonal constraints.
A configuration of TPDA 〈q, η, 〈γ1, r1〉 . . . 〈γn, rn〉〉 is a triple of a location q, a
valuation of clocks η : X → Q+, and a timed stack where each element 〈γi, ri〉 is a
pair of a symbol γi and its age ri ∈ Q+. TPDA differ from RTA in the following
point: In TPDA, timed transitions evolve synchronously the values of all the
clocks within the stack at the same rate: 〈q, η, 〈γ1, r1〉 . . . 〈γn, rn〉〉 δ 〈q, η +
δ, 〈γ1, r1+δ〉 . . . 〈γn, rn+δ〉〉. Surprisingly, Abdulla et al. showed the reachability
problem of TPDA is decidable and ExpTime-complete [1]. To show this, they
designed a region abstraction for pushdown-extensions of timed automata.

Our SRTA are described as synchronized RTA, thus a configuration is the
same as RTA, but timed transitions synchronously evolve the values of all the
clocks within the stack: 〈q, 〈γ1, η1〉 . . . 〈γn, ηn〉〉 δ 〈q, 〈γ1, η1+ δ〉 . . . 〈γn, ηn+ δ〉〉.
Compared to TPDA, the formalization of SRTA includes both diagonal con-
straints and fractional constraints. These constraints make SRTA more expres-
sive than TPDA (with diagonal constraints). Even though SRTA extend TPDA,
we show that the reachability problem of SRTA remains ExpTime-complete. Our
decidability proof is separated into two stages.
At a first stage, we translate SRTA into SRTA without diagonal constraints by
effectively using fractional constraints. In TPDA, Clemente and Lasota showed
that TPDA with diagonal constraints collapse to TPDA with an untimed stack
whose configurations are 〈q, η, γ1 . . . γn〉 in [8]. This implies that adding diagonal
constraints does not enlarge the language class. However, we cannot apply their
untiming technique to SRTA because the above mentioned language Lex requires
unboundedly many clocks, and this contrasts with the Clemente’s result.
At a second stage, we adapt the region abstraction of Abdulla et al. [1] to show
the ExpTime-completeness of the reachability problem of SRTA without diag-
onal constraints. Interestingly, our fractional constraints are obtained by inves-
tigating the region abstraction of Abdulla et al. [1], and thus our construction
is based on their region abstraction. We find out that Abdulla’s proof structure
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is essentially a backward-forward simulation of Lynch and Vaandrager [11] and
this mixed simulation makes their proof involved. From this insight, we intro-
duce an intermediate semantics to separate the mixed simulation into two simple
simulations, and this makes entire proof easy to follow.
Concrete Valuations. The set of nonnegative rationalsQ+ is defined by:Q+ ,
{r ∈ Q : r ≥ 0}. For a rational r ∈ Q+, we use brc and {r} to denote the integral
and fractional part of r, respectively: e.g., b1.5c = 1 and {1.5} = 0.5.

Let X be a clock set. A function η : X → Q+ is called a concrete valuation on
X and we write XV for the set of valuations on X. We define basic operations:

(η[x B r])(y) ,

{
r if y = x

η(y) otherwise,
η[x B y] , η[x B η(y)], (η+r)(y) , η(y)+r,

where x, y ∈ X and r ∈ Q+. The zero valuation onX is defined by: 0X(x) , 0 for
x ∈ X. For η ∈ XV and Y ⊆ X, we write η|Y ∈ YV to denote the restriction of η
to Y . We define the ordering η ≤ η′ on valuations by: η ≤ η′ if ∃r ∈ Q+.η′ = η+r.

Pushdown Systems. A pushdown system (PDS) is a triple (Q,Γ, ↪→) where
Q is a finite set of control locations, Γ is a (possibly infinite) stack alphabet,
and ↪→ ⊆ (Q × Γ∗) × (Q × Γ∗) is a set of transition rules. A configuration is
a pair 〈q, w〉 of a location q ∈ Q and a stack w ∈ Γ∗. The one-step transition
〈q, w v〉→〈q′, w v′〉 is defined if 〈q, v〉 ↪→〈q′, v′〉. We also write w → w′ by omitting
locations if the locations are irrelevant. A PDS is called finite-PDS if its stack
alphabet is finite. Otherwise, it is called infinite-PDS. The reachability problem
from qinit to qfinal decides if 〈qinit, ε〉→∗ 〈qfinal, w〉 holds for some stack w, and it
is well-known that the reachability problem of finite-PDS is in PTime [7, 5, 9].

2 Synchronized Recursive Timed Automata
First, we introduce synchronized recursive timed automata (SRTA) where the
values of all the clocks in the stack are increased synchronously at the same rate.
Next, we study the expressiveness of SRTA by brief comparisons with recursive
timed automata and timed pushdown automata. Finally, we see the overview of
our decidability proof.

Clock Constraints. We write I ∈ I for an interval: I , {(i, j), [i, j] : i, j ∈ N}.
Let X be a clock set. Then, the set ΦX of clock constraints is given by:

ϕ ::= x ∈ I | x ./ y | {x} = 0 | {x} ./ {y} | ϕ ∧ ϕ | ¬ϕ
where x, y ∈ X, I ∈ I, ./ ∈ {<,=, >}.

For ϕ ∈ ΦX and η ∈ XV , we write η |= ϕ if ϕ holds when clocks are replaced by
values of η: e.g., η |= x∈I if η(x) ∈ I, η |= {x}=0 if {η(x)} = 0. The fractional
constraints {x} = 0 and {x} ./ {y} are novel features and these are used to
recognize the language Lex and treat diagonal constraints later on.

Definition 1 (Synchronized Recursive Timed Automata). A synchro-
nized recursive timed automaton is a tuple s = (Q, qinit, qfinal,Σ,Γ,X ,∆) where
Q is a finite set of control locations, qinit and qfinal are the initial and accepting
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locations respectively, Σ is a finite input alphabet, Γ is a finite set of stack sym-
bols, X is a finite set of clocks, and ∆ ⊆ Q× (Σ ·∪ {ε})×Op ×Q is a finite set
of discrete transition rules. The operations τ ∈ Op are given by:

τ ::= push(γ,X) | pop(γ,X) | x← I | check(ϕ)
where γ ∈ Γ, X ⊆ X , x ∈ X , I ∈ I, and ϕ ∈ ΦX .

We define the standard semantics Stnd of SRTA as a transition system.

Definition 2 (Semantics Stnd). A configuration is a pair 〈q, w〉 of a location
q and a stack w where each frame 〈γ, η〉 consists of a stack symbol γ and a
concrete valuation η ∈ XV . The set of configurations of Stnd is Q× (Γ×XV )∗.

For τ ∈ Op, we define a discrete transition w τ−→ w′ for w,w′ ∈ (Γ×XV )∗ by
case analysis on τ :

η2 = 0X [X B η1]

w 〈γ, η1〉 → w 〈γ, η1〉 〈γ′, η2〉
push(γ′, X)

r ∈ I η′ = η[x B r]

w 〈γ, η〉 → w 〈γ, η′〉 x← I

η′1 = η1[X B η2]

w 〈γ, η1〉 〈γ′, η2〉 → w 〈γ, η′1〉
pop(γ′, X)

η |= ϕ

w 〈γ, η〉 → w 〈γ, η〉
check(ϕ)

where η[{x1, . . . , xn} B η′] , η[x1 B η′(x1), . . . , xn B η′(xn)].
In addition to discrete transitions, we allow timed transitions:

〈γ1, η1〉〈γ2, η2〉 · · · 〈γn, ηn〉
δ
 〈γ1, η1 + δ〉〈γ2, η2 + δ〉 · · · 〈γn, ηn + δ〉

where δ ∈ Q+. These transitions for a stack are extended to configurations:
〈q, w〉 α−→〈q′, w′〉 if w τ−→w′ for some 〈q, α, τ, q′〉∈∆ and 〈q, w〉 δ 〈q, w′〉 if w δ w′.

Definition 3 (Timed Languages). A run π is a finite alternating sequence
of timed and discrete transitions. From a run π = c0

δ0 c′0
α0−→ c1

δ1 c′1
α1−→ · · · δn 

cn
αn−−→ c′n, we define the timed trace tt(π) , (α0, δ0)(α1, δ0+δ1) . . . (αn,Σ

n
i=0δi) ∈

((Σ ·∪ {ε}) × Q+)∗ and the timed word tw(π) ∈ (Σ × Q+)∗ by removing all the
(ε, t) pairs from tt(π). The timed language of s is defined by the runs from qinit
to qfinal: L(s) , {tw(π) : π = 〈qinit, 〈⊥,0X 〉〉 · · · → 〈qfinal, w〉} .
(For the initial configuration 〈⊥,0X 〉, we require the special stack symbol ⊥ in Γ.)

Timed Language Example. We consider the following timed language:

Lex , {(a, t1)(a, t2) . . . (a, tn)(b, t′n) . . . (b, t′2)(b, t′1) : δi ∈ N and δi ≥ δj if i < j} ,
where δi = t′i − ti. Note that if we forget the time stamps from Lex then the
language {anbn : n ≥ 1} is a typical context-free language.

We consider a SRTA ({q0, . . . , q4} , q0, q4, {a, b} , {⊥, \, ]} , {x} ,∆) where ∆ is
defined as follows:

q0 q1 q2

q3

q4

a, τ1 b, τ2

a, τ ′1

ε, τ3

ε, τ4

b, τ2

τ1 = push(\, ∅), τ ′1 = push(], ∅), τ2 = check({x} = 0), τ3 = pop(], ∅), τ4 = pop(\, ∅).
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First, we consider the timed word (a, 0.1)(a, 1.2)(b, 2.2)(b, 3.1) ∈ Lex and it is
accepted by the following run:

〈q0, 〈⊥, 0〉〉
0.1
 

a−→ 〈q1, 〈⊥, 0.1〉〈\, 0〉〉
1.1
 

a−→ 〈q1, 〈⊥, 1.2〉〈\, 1.1〉〈], 0〉〉
1.0
 

〈q1, 〈⊥, 2.2〉〈\, 2.1〉〈], 1〉〉
b−−−−−−−−→

check({x}=0)
〈q2, 〈⊥, 2.2〉〈\, 2.1〉〈], 1〉〉

0.5
 

ε−→

〈q3, 〈⊥, 2.7〉〈\, 2.6〉〉
0.4
 

b−→ 〈q2, 〈⊥, 3.1〉〈], 3〉〉
0
 

ε−→ 〈q4, 〈⊥, 3.1〉〉.

The action τ2 (i.e., check({x} = 0)) checks if the fractional part of t′i − ti is
zero, hence it excludes a run such that 〈q0, 〈⊥, 0〉〉

0.1
 

a−→0.2
 〈q1, 〈⊥, 0.3〉〈\, 0.2〉〉 6

b−→
〈q2, 〈⊥, 0.3〉〈\, 0.2〉〉.
Simulating Diagonal Constraints x − y ./ k. In SRTA, every update x ← I is
bounded because I is an interval. This enables us to encode diagonal constraints
of the form x− y ./ k where k ∈ Z.

Let us see an idea of encoding the constraint x − y ./ 1. We prepare an
extra clock y+1 for denoting y + 1 and check x ./ y+1 instead of x − y ./ 1.
In order to keep y + 1 = y+1, when we update y ← (i, i + 1), we also execute
y+1 ← (i + 1, i + 2) and check({y} = {y+1}). In the case of y ← [i, i], we do
y+1 ← [i+1, i+1]. Since any updates y ← I can be decomposed into the forms of
y ← (i, i+ 1) and y ← [j, j] by nondeterminism of SRTA, our decidability result
extends even if we consider general diagonal constraints of the form x− y ./ k.

Then, this decidability result is analogous to one of Bouyer et al. for timed
automata with bounded updates and diagonal constraints [6].

Compare to Recursive Timed Automata. The formulation of recursive timed au-
tomata (RTA) [12, 3] differs from SRTA in timed transitions: RTA increase only
the top of a stack: 〈q, 〈γ1η1〉 . . . 〈γn, ηn〉〉 δ 〈q, 〈γ1, η1〉 . . . 〈γn, ηn + δ〉〉 where
δ ∈ Q+. The difference of timed transitions between SRTA and RTA is cru-
cial because RTA can simulate two-counter machines [12, 3] by using the timed
transitions effectively.

Krishna et al. considered the subset of RTA called RTARN in [10] and showed
that the reachability problem of RTARN is decidable. RTARN are completely sub-
sumed by our SRTA because RTARN are SRTA without diagonal and fractional
constraints. Although their proof closely followed that of Abdulla et al. [1] and
depended on the details of Abdulla’s construction, we adapt the Abdulla’s con-
struction to simplify our proof.

Compare to Timed Pushdown Automata. Timed pushdown automata of
Abdulla et al. [1] are a pushdown extension of timed automata. Recently, Clemente
and Lasota [8] equipped TPDA with diagonal constraints and showed that the
expressiveness of TPDA with diagonal constraints is equivalent to that of TPDA
with respect to languages.

Let us briefly see the formulation of Clemente and Lasota. The constraints
ψ ∈ ΨX in their system are given as follows:

ψ ::= x ./ k | x− y ./ k | ψ ∧ ψ where x, y ∈ X and k ∈ Z.
Since there are no fractional constraints ({x} = 0 or {x} ./ {y}), we cannot in-
spect the fractional parts of clocks. A TPDA is a tuple (Q, qinit, qfinal,Σ,Γ,X ,∆)
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and a configuration 〈q, X, 〈γ1, r1〉〈γ2, r2〉 . . . 〈γn, rn〉〉 is a triple of a location q, a
(global) valuation X on X , and a stack where 〈γi, ri〉 ∈ Γ × Q+. There are four
kinds of discrete operations for ∆:
push(γ) : 〈p, X, w〉 → 〈q, X, w〈γ, 0〉〉, reset(x) : 〈p, X, w〉 → 〈q, X[x B 0], w〉,
pop(γ, ψ′) : 〈p, X, w〈γ, r〉〉 → 〈q, X, w〉 if X ·∪ {z 7→ r} |= ψ′ where ψ′ ∈ ΨX ·∪{z},

check(ψ) : 〈p, X, w〉 → 〈q, X, w〉 if X |= ψ where ψ ∈ ΨX .
Since a valuation X of TPDA is simulated by using the value-copying mechanism
of push(γ,X ) and pop(γ,X ) in SRTA, we obtain the following result.

Theorem 1. For a TPDA T = (Q, qinit, qfinal,Σ,Γ,X ,∆), we can build a SRTA
s = (Q′, q′init, q

′
final,Σ,Γ ·∪ {⊥},X ·∪ {z, x} ,∆′) such that L(T ) = L(s).

Proof (Sketch). A push transition 〈p, X, ε〉 α,push(γ)−−−−−−→ 〈q, X, 〈γ, 0〉〉 is simulated by

〈p, 〈⊥, η〉〉 α,push(γ,X )−−−−−−−−→ 〈q, 〈⊥, η〉〈γ, η′〉〉 where X(x) = η(x) for all x ∈ X .
To simulate a pop transition 〈p, X, 〈γ, v〉〉 α,pop(γ,ψ)−−−−−−−→ 〈q, X, ε〉 atomically in s,

we use the extra clock x as follows:

〈p, 〈⊥, η〉〈γ, η′〉〉 ε,x←[0,0]−−−−−−→ 〈p′, 〈⊥, η〉〈γ, η′[x B 0]〉〉 δ1 ε,check(ψ)−−−−−−→ δ2 
α,pop(X ·∪{x})−−−−−−−−−→

〈q′, 〈⊥, η′′〉〉 δ3 ε,check(x∈[0,0])−−−−−−−−−−→ 〈q, 〈⊥, η′′〉〉 where X(x) = η′(x) = η′′(x) for x ∈ X .
By using the clock x as a stopwatch, we ensure that there are no interfering
timed transitions and δ1 = δ2 = δ3 = 0.0. ut

Furthermore SRTA have the major advantage over TPDA, namely we can
inspect the fractional parts of clocks by fractional constraints. Indeed, the lan-
guage class of SRTA is strictly larger than TPDA with diagonal constraints.

Theorem 2. The above timed language Lex cannot be recognized by TPDA with
diagonal constraints.
Intuitively, unboundedly many clocks are needed to keep the exact fractional
values to recognize the language Lex. See the appendix for details of the proof
of this theorem.

This suggests that fractional constraints play a crucial role in pushdown
extensions of timed automata. Interestingly, the constraints are obtained by
studying the Abdulla’s proof [1]. Unlike standard regions of timed automata,
Abdulla’s regions carry the fractional part ordering of clocks even their values
are beyond the bound that the maximal constant appears in interval constraints.

As an overview of the rest of the paper, we see the proof of our main theorem.

Main Theorem. The reachability problem of SRTA, which decides if there is
a run from 〈qinit, 〈⊥,0〉〉 to 〈qfinal, w〉 for some stack w, is ExpTime-complete.

Proof. The ExpTime-hardness is shown from the result of Abdulla et al. that the
reachability problem of TPDA is ExpTime-hard [1] and the above Theorem 1.

Next, to show the reachability problem is decidable and in ExpTime, we
build the finite-PDS semantics Digi through Section 3 and Section 4:

SRTA
Thm 3

SRTA without comparisons x ./ y
Thm 4

Digi
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where each step preserves the reachability and especially Theorem 3 states that
we can safely remove clock comparisons while preserving languages of SRTA.

The obtained finite-PDS Digi is basically equivalent to the symbolic push-
down automaton of Abdulla et al. and they proved the reachability problem of
that is in ExpTime by using the PTime algorithm for the reachability problem
of finite-PDS [7, 5, 9]. Hence, the reachability problem of SRTA is also in Exp-
Time. ut

3 Language-Preserving Removal of Comparison Constraints
We show that comparison constraints x ./ y can be removed from SRTA without
losing its expressiveness. Namely, for a given SRTA s, we construct a SRTA s′
without comparison constraints such that L(s) = L(s′).

We say that a SRTA s = (Q, qinit, qfinal,Σ,Γ,X ,∆) is M-bounded if M ≥ j
holds for any interval (i, j) or [i, j] in ∆. As a running example of this section,
we consider the following run of a 2-bounded SRTA:

η1
push({u,z})−−−−−−−→ η1 η2

y←[1,2]−−−−−→ η1 η
′
2

1.3
 η′1 η

′′
2

u←[0,1]−−−−−→ η′1 η
′′′
2

pop({u,y,z})−−−−−−−−→ η3

where
η1 = {x1 7→ 0.1;x2, u 7→ 1.2; z 7→ 2.6} , η′1 = {x1 7→ 1.4;x2, u 7→ 2.5; z 7→ 3.9} ,
η2 = {y 7→ 0.0;u 7→ 1.2; z 7→ 2.6} , η′2 = {u 7→ 1.2; y 7→ 1.4; z 7→ 2.6} ,
η′′2 = {u 7→ 2.5; y 7→ 2.7; z 7→ 3.9} , η′′′2 = {u 7→ 0.3; y 7→ 2.7; z 7→ 3.9} .
From the definition, η3 = {u 7→ 0.3;x1 7→ 1.4;x2 7→ 2.5; y 7→ 2.7; z 7→ 3.9}. For
the sake of readability, we only write relevant clocks for an explanation as above.
Also, we omit zero timed transitions 0.0

 , locations, input alphabet, and stack
symbols.

Our basic idea is to encode the liner order between clocks into a stack symbol:
e.g., a linear order of η′1 is represented symbolically by x1 < *x2, u+<z as a stack
symbol. Hence, the above run is encoded as follows:

ν1
push({u,z})−−−−−−−→ ν1 ν2

y←[1,2]−−−−−→ ν1 ν
′
2

1.3
 ν′1 ν

′′
2

u←[0,1]−−−−−→ ν′1 ν
′′′
2

pop({u,y,z})−−−−−−−−→ ν3

where
ν1 =

(
η1, x1 < *x2, u+<z

)
, ν2 =

(
η2, y <u<z

)
, ν′2 =

(
η′2, u<y <z

)
,

ν′1 =
(
η′1, x1 < *x2, u+<z

)
, ν′′2 =

(
η′′2 , u<y <z

)
, ν′′′2 =

(
η′′′2 , u<y <z

)
.

For this encoding we do the following calculation at each step:

1. At push({u, z}), we extract the order of u and z in ν1 and pass u<z to ν2.
2. At update y ← [1, 2], first we actually perform y ← [1, 2] and set y 7→ 1.4,

so we obtain (η′2, y < u < z). Next, we reconstruct the correct order u < y
of y and u in η′2. Since our updates y ← [i, j] or y ← (i, j) are M-bounded
(i.e., j ≤ 2), we can calculate the correct order by using M-bounded interval
constraints and fractional constraints. After check(u∈(1, 2)), check(y∈(1, 2)),
and check({u}<{y}), we find out u<y.

3. At time transition 1.3
 , we do not need modify any orderings.

4. At update u← [0, 1], we also perform u← [1, 2] first and next we reconstruct
the correct ordering of η′′′2 .
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Finally, we consider the pop({u, y, z}) transition. As above, first we actually
perform pop({u, y, z}) and obtain (η3, ν

′
1 : (x1 < *x2, u+< z) & ν′′′2 : (u< y < z)).

However we have no ways to determine the correct ordering u < x1 < x2 < y < z
because both η3(x2) and η3(y) are larger than M = 2 and x2 < y cannot be
understood with 2-bounded interval constraints. Of course, if we takeM = 3 then
this matter is solved but this is very ad-hoc and does also fail when ν1 ν′2

2.3
 ν1 ν

′′
2 .

To solve this, we introduce auxiliary clocks
•
{i and •{j as follows:

λ1
push({u,z})−−−−−−−→ λ1 λ2

y←[1,2]−−−−−→ λ1 λ
′
2

1.3
 λ′1 λ

′′
2
u←[0,1]−−−−−→ λ′1 λ

′′′
2

pop({u,y,z})−−−−−−−−→ λ3

where
λ1 =

(
η1 ·∪ {

•
{0 7→ 0.0;

•
{1 7→ 1.0;

•
{2 7→ 2.0},

•
{0 <x1 <

•
{1 < *x2, u+<

•
{2 <z

)
,

λ2 =
(
η2 ·∪ {•{0 7→ 0.0; •{1 7→ 1.0; •{2 7→ 2.0}, *y, •{0+< •{1 <u< •{2 <z

)
,

λ′2 =
(
η′2 ·∪ {•{0 7→ 0.0; •{1 7→ 1.0; •{2 7→ 2.0}, •{0 < •{1 <y <u< •{2 <z

)
,

λ′1 =
(
η′1 ·∪ {

•
{0 7→ 1.3;

•
{1 7→ 2.3;

•
{2 7→ 3.3},

•
{0 <x1 <

•
{1 < *x2, u+<

•
{2 <z

)
,

λ′′2 =
(
η′′2 ·∪ {•{0 7→ 1.3; •{1 7→ 2.3; •{2 7→ 3.3}, •{0 < •{1 <y <u< •{2 <z

)
,

λ′′′2 =
(
η′′′2 ·∪ {•{0 7→ 1.3; •{1 7→ 2.3; •{2 7→ 3.3}, u< •{0 < •{1 <y < •{2 <z

)
.

When taking a push({u, z}), in λ1 we set the clocks by
•
{i ← [i, i] and in λ2 we

also set the clocks by •{i ← [i, i]. We require two kinds of the auxiliary clocks
•
{

and •{ because if we push new frame on top of the current frame λ2, we again
set

•
{i ← [i, i] in λ2. To compute the correct ordering in λ3 at pop({u, y, z}), the

auxiliary clocks
•
{ of λ′1 and •{ of λ

′′′
2 behave as separators as follows.

Determine x2 <y.With the auxiliary clocks, we try to determine x2 <y. Perform-
ing pop({u, y, z}) makes (η3 ·∪ {

•
{0 7→ 1.3,

•
{1 7→ 2.3,

•
{2 7→ 3.3}, λ′1 : o1 & λ′′′2 : o2)

where o1 =
•
{0 <x1 <

•
{1 < *x2, u+<

•
{2 <z and o2 = u< •{0 < •{1 <y < •{2 <z.

It is easily understood that
•
{1 < x2 <

•
{2 and

•
{1 < y <

•
{2 from o1 and o2.

We also obtain {
•
{1} < {x2} < {y} by using fractional constraints because of

{
•
{1} = 0.3, {x2} = 0.5, and {y} = 0.7. Then

•
{1 <x2 <y <

•
{2 follows from: 1) the

fractional part ordering {
•
{1} < {x2} < {y}, 2) x2 and y are in between

•
{1 and

•
{2, and 3) the fact

•
{1 + 1.0 =

•
{2 obtained by the construction.

Treating clocks <
•
{0 or >

•
{M. From the above argument, in general, we can

reconstruct the correct ordering of clocks between
•
{0 and

•
{M. Here we consider

the other clocks: 1) clocks are smaller than
•
{0 and 2) clocks are larger than

•
{M.

(1) We consider u < •{0 in o2. This states that u was updated after push({u, z})
because the only way to make a clock smaller than •{0 is updating. Hence, we
take x<

•
{0 in λ3 if x< •{0 in o2. And also we take xC x′ in λ3 if xC x′ < •{0 in o2

where C ∈ {<,=}. As the result, we obtain u<
•
{0 in λ3.

(2) We consider •{M < z in o2. This states that z was copied by push({u, z})
and never updated because our updates are bounded by M=2 and the bounded
updates cannot make a clock larger than •{M. Thus, we take

•
{M <x in λ3 if

•
{M <x

in o1 and xC x′ in λ3 if
•
{M <xC x′ in o1. As the result, we obtain

•
{M <z in λ3.

Finally, we find out u <
•
{0 < x1 <

•
{1 < x2 < y <

•
{2 < z and it reflects the correct

ordering u<x1 <x2 <y <z in η3.
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In general, when performing pop(X) for (η1,o1) and (η2,o2), we build the
ordering o3 of η3 (= η1[X B η2]) in the following steps from I. to IV.:

We write X{ for X ·∪ {
•
{i, •{i : i ∈ [0..M]} and Y for {y ∈ X : y ≤ •{M in o2}.

I. For x1, x2 ∈ X{ \ Y , if x1 ./ x2 in o1 then add x1 ./ x2 to o3.
II. For y ∈ Y , if y ./ •{i in o2, then add y ./

•
{i to o3.

III. For z1, z2 ∈ X{ such that
•
{i < z1 <

•
{i+1 and

•
{i < z2 <

•
{i+1 in o3,

– add z1 < z2 to o3 if η3 |= {
•
{i} < {z1} < {z2}, η3 |= {z2} < {

•
{i} < {z1}, or

η3 |= {z1}<{z2}<{
•
{i}.

– add z1 = z2 to o3 if η3 |= {z1} = {z2}.
IV. For y1, y2 ∈ Y , if y1C y2 < •{0 in o2, then add y1C y2 in o3 where C ∈ {<,=}.
We remark that the computation of o3 only requires o1, o2, and fractional con-
straints. Then the lemma below holds for well-formed simulating stacks.

A stack (η1,o1)(η2,o2) . . . (ηn,on) is a well-formed simulating stack if
– For any i ∈ [1..n], ηi |= x ./ y iff x ./ y in oi;
– For any i ∈ [1..(n− 1)], ηi(

•
{j) = ηi+1( •{j), ηi(x) = ηi+1(x) if

•
{M < x in oi+1,

and
•
{0 is the smallest in ηi.

Lemma 1. Let w (η1,o1) (η2,o2) be a well-formed simulating stack. The simu-

lated pop(X) transition w (η1,o1) (η2,o2)
pop(X)−−−−→w (η1[X B η2],o3) (where o3

is obtained by the above steps) preserves well-formedness of the stack.

Since well-formedness is also preserved under the other transitions, the main
result of the present section follows.

Theorem 3. For a given SRTA s, we can build a SRTA s′ without comparison
constraints such that L(s) = L(s′). To determine and keep correct orderings,
the size of locations and stack symbols of s′ are exponential in |X | and M of s.
However, the size of clocks of s′ is linear in M of s.

Proof (Sketch). In simulated transitions of pop, we use the ordering o2 in the top
frame and o1 in the next frame within a stack at the same time. This operation,
however, is not allowed in the formalization of SRTA. Hence we use extended
locations qo with a symbolic ordering o to realize transitions as follows:

a push transition: 〈q0, w〈γ1, η1,o1〉〉
α1,push(γ2,X)−−−−−−−−−→ 〈q1, w〈γ1, η1,o1〉〈γ2, η2,o2〉〉

is realized by

〈qo1
0 , w′〈(γ1,o), η1〉〉

α1,push((γ2,o1),X)−−−−−−−−−−−−→ 〈qo2
1 , w′〈(γ1,o), η1〉〈(γ2,o1), η2〉〉.

Also, a pop transition

〈q2, w〈γ1, η1,o1〉〈γ2, η2,o2〉〉
α2,pop(γ2,X)−−−−−−−−→ 〈q3, w〈γ1, η1[X B η2],o3〉〉

is realized by

〈qo2
2 , w′〈(γ1,o), η1〉〈(γ2,o1), η2〉〉

α2,pop((γ2,o1),X)−−−−−−−−−−−→ 〈qo3
3 , w′〈(γ1,o), η1[X B η2]〉〉.

More precisely, the one step of the above transitions should be decomposed
into multi-step ε-transitions that are performed atomically. To ensure this atom-
icity, we again employ the technique appearing in the proof of Theorem 1. ut
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4 Collapsed and Digital Semantics for Reachability Problem

Based on the result of the previous section, hereafter we consider SRTA without
comparison constraints. In this section, we consider three techniques and combine
them to translate the standard semantics Stnd into a finite-PDS semantics
Digi via an infinite-PDS semantics Coll. Before describing our construction,
we compare the approaches of Abdulla et al. and ours to show that a reachability
in the abstract semantics Digi is also possible in the concrete semantics Stnd.
W W ′

C C ′∃ ∀

∀ ∃

≈ ≈

w w′

∈ ∈
The proof of Lemma 4 of Abdulla et al. [1] can be sum-

marized schematically as the left diagram: if W → W ′ and
C ′ ≈ W ′, then there exists C such that for all w ∈ C there
exists w′ ∈ C ′ with w → w′. We find out that this elaborate
simulation is called backward-forward simulations in Lynch

and Vaandrager [11]. It is a source of complications in their proof to simulta-
neously handle the backward direction (choosing C from C ′) and the forward
direction (finding w′ from w ∈ C). In addition, the stack correspondence ≈
was defined indirectly through a flatten operator, and it is another source of
complications in their proof. For example, the operator flat flattens a stack
of Stnd η1η2η3 to a single valuation η where η = η

(1)
1 ·∪ η(2)2 ·∪ η(3)3 is uniquely

obtained by introducing x(i) for x at i-th frame: η(i)i (x(i)) , ηi(x). However,
for a stack of the abstract semantics Digi, flat behaves nondeterministically
because as we will see later on we dismiss exact fractional values to obtain
a finite-PDS. Then there are many ways to arrange clocks in a linear order.
W W ′

w w′
∃ ∀

w w′
∀ ∃

|= |=

∼ ∼

Lem6

Lem3

In contrast, we clearly solve these problems as Lemma 3
and 6 by considering the intermediate semantics Coll.
This allows us to completely separate the above mixed
simulation into two simple simulations and directly define
correspondences ∼ and |= in a componentwise manner. Fi-
nally, these make the entire proof easy to follow.

We use the following run of Stnd as a running example of this section:
η1 η2

push(∅)−−−−→ η1 η2 0X
x←[1,2]−−−−−→ η1 η2 η3

2.0
 η′1 η

′
2 η
′
3

pop({x})−−−−−→ η′1 η4 where
η1 = {x 7→ 0.5}, η2 = {x 7→ 2.0}, η3 = {x 7→ 1.5}, η′i = ηi + 2, and η4 = {x 7→ 3.5}.

4.1 Collapsed Semantics
Removing the unboundedness. Since we consider SRTA without comparison con-
straints, we can safely collapse the integral parts of clocks which are larger than
M where M ≥ max{j : (i, j) or [i, j] appears in interval constraints}. For exam-
ple, if M = 2, we cannot distinguish {x 7→ 2.5; y 7→ 2.6} and {x 7→ 3.5; y 7→ 4.9}
by any constraints. The above run is collapsed as follows (if M = 2):

λ1 λ2
push(∅)−−−−→ λ1 λ2 0X

x←[1,2]−−−−−→ λ1 λ2 λ3
2.0
 λ′1 λ

′
2 λ
′
3

pop({x})−−−−−→ λ′1 λ4 where
λ1 = {x 7→ 0.5}, λ2 = {x 7→ 2.0}, λ3 = {x 7→ 1.5}, λ′i = λi + 2, and λ4 = {x 7→ ∞.5}.
Definition 4. We define the collapse function to formalize the above argument:

C : Q+ →
(
{0, 1, . . . ,M,∞}

)
×
(
Q+ ∩ [0, 1)

)
; C(r) ,

{
(brc, {r}) if r ≤ M

(∞, {r}) otherwise.
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We write v.r to denote (v, r). Moreover, bv.rc and {v.r} denote v and r, respec-
tively. For a concrete valuation η on X, we define the collapsed valuation of η by
C(η)(x) , C(η(x)). We use Greek letters λ, . . . to denote a collapsed valuation.

Proposition 1. Let η1 and η2 be concrete valuations on X. If C(η1) = C(η2),
Validity. η1 |= ϕ iff η2 |= ϕ for any constraint ϕ except comparison constraints.
Copying. C(η1[x B y]) = C(η2[x B y]) for any x, y ∈ X.
Restriction. C(η1|Y ) = C(η2|Y ) for any Y ⊆ X.
Updating. C(η1[x B r]) = C(η2[x B r]) for any x ∈ X and r ∈ [0,M].
Evolve. C(η1 + δ) = C(η2 + δ) for any δ ∈ Q+.
By Proposition 1, we define several notions for collapsed valuations as follows. Let
X be a clock set, η and λ be concrete and collapsed valuations onX, respectively,
such that C(η) = λ. For a constraint ϕ, we write λ |= ϕ if η |= ϕ. Then λ |= ϕ is
well-defined because Proposition 1 ensures that the result does not depend on
the choice of a witness η for λ. We also define copying λ[x B y], restriction λ|Y ,
updating λ[x B r], and evolve λ+ δ in the same way.

We define a quasi-ordering for collapsed valuations. Let λ, λ′ be collapsed
valuations and η be a concrete valuation such that C(η) = λ. We write λ 4 λ′ if
there exists η′ such that η ≤ η′ and C(η′) = λ′.
Removing entire stack modifications. Collapsed valuations are effective to reduce
the unboundedness of the nonnegative rational numbers. However, they are in-
effective to reduce entire stack modifications of timed transitions in Stnd and
translate Stnd into an infinite-PDS semantics.

To obtain a corresponding infinite-PDS semantics, we adopt the lazy time
elapsing technique of Abdulla et al. [1]. Then the above collapsed run is simu-
lated as follows:

λ1
push(∅)−−−−→ λ1 λ2

x←[1,2]−−−−−→ λ1 λ
′
2

2.0
 λ1 λ

′′
2

pop({x})−−−−−→ λ,

where λ1 = {•x 7→ 0.5; •x 7→ 2.0}, λ2 = {•x 7→ 2.0; •x 7→ 0.0}, λ′2 = {•x 7→ 2.0; •x 7→
1.5}, and λ′′2 = {•x 7→ ∞.0; •x 7→ ∞.5}.

Although we do not evolve the frames below the top frame during the timed
transition, we lazily evolve λ1 when performing the pop({x}) transition. To
correctly evolve λ1, we use the marked clocks •x of λ1 and •x of λ′′2 and increase
λ1 + δ until they are compatible: λ1( •x) + δ = λ′′2( •x).

However, there are two possibilities for compatibility:
– δ1 = 1.0: λ1 + δ1 = {•x 7→ 1.5; •x 7→ ∞.0} is compatible with λ′′2 .
– δ2 = 2.0: λ1 + δ2 = {•x 7→ ∞.5; •x 7→ ∞.0} is compatible with λ′′2 .
The ambiguity happens because we collapse the integral parts of clocks. In order
to overcome this problem, we use the reference clock { and it is inserted as the
value 0.0 when a push transition is taken as follows:

Λ1
push(∅)−−−−→ Λreset

1 Λ2
x←[1,2]−−−−−→ Λreset

1 Λ′2
2.0
 Λreset

1 Λ′′2
pop({x})−−−−−→ Λ,

Λreset
1 = {•x 7→ 0.5; •x 7→ 2.0;

•
{ 7→ 0.0}, Λ2 = {•x 7→ 2.0; •x 7→ 0.0; •{ 7→ 0.0},

Λ′2 = {•x 7→ 2.0; •x 7→ 1.5; •{ 7→ 0.0}, Λ′′2 = {•x 7→ ∞.0; •x 7→ ∞.5; •{ 7→ 2.0}.

The clock { enables us to find the correct corresponding valuation Λ′1 of Λreset
1 as

Λ′1 = Λreset
1 + 2.0 (c.f. Lemma 2) and it also appeared in Abdulla’s construction.
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To formalize the above lazy time elapsing technique, we define the notion of
clock marking and extended clock set.

Definition 5. Let X be a clock set. We define the marked clock sets
•
X and •X

of X by marking every clock x as •x and •x, respectively. For a valuation η ∈ XV ,
the renamed valuation •η ∈

•
XV is defined by •η( •x) , η(x) for all x ∈ X. We also

define the renamed valuation
•
η ∈ •XV . Furthermore, for a constraint ϕ ∈ ΦX ,

we define •ϕ ∈ Φ •
X by renaming every clock x in ϕ to •x.

We extend the clock set X to X by X , X ·∪ {{}. We use C for the set of
collapsed valuations on •X ·∪

•
X and use capital Greek letters Λ, . . . to denote a

collapsed valuation in C.

Let Λ1 and Λ2 be collapsed valuations on •X ·∪
•
X. Then,

– the two valuations are compatible Λ1 ‖ Λ2: if Λ1( •x) = Λ2( •x) for all x ∈ X.
– If two valuations are compatible, then the glued valuation Λ1 ⊕ Λ2 ∈ C is

defined by (Λ1 ⊕ Λ2)( •x) , Λ1( •x) and (Λ1 ⊕ Λ2)( •x) , Λ2( •x) for x ∈ X.
Collapsed valuations lead to the collapsed semantics Coll, which removes

the unboundedness of rationals and entire stack modifications of Stnd.

Definition 6 (Collapsed Semantics). We define the infinite-PDS (Q,Γ ×
C, ↪→) where 〈q,w〉 ↪→ 〈q′,w′〉 if there is 〈q, τ, q′〉 ∈ ∆ and w

τ
↪−→ w′.

For τ ∈ Op, we define the action w
τ
↪−→ w′ by case analysis on τ as follows:

Λr
1 = Λ1[

•

{ B 0] Λr
1 ‖ Λ2 Λ2|

•
X = C(

•
0X)

〈γ,Λ1〉 ↪→ 〈γ,Λr
1〉〈γ′,U(X,Λ2)〉

push(γ′, X)
r ∈ I Λ′ = Λ[ •x B r]

〈γ,Λ〉 ↪→ 〈γ,Λ′〉 x← I

Λ1 4 Λ′
1 Λ′

1 ‖ Λ2 Λ = Λ′
1 ⊕ U(X \X,Λ2)

〈γ,Λ1〉 〈γ′,Λ2〉 ↪→ 〈γ,Λ〉
pop(γ′, X)

Λ |= •ϕ

〈γ,Λ〉 ↪→ 〈γ,Λ〉
check(ϕ)

where U({x1, . . . , xn} ,Λ) , Λ[ •x1 B •x1, . . . ,
•xn B •xn] and this intuitively means

that copying the values of clocks xi in the next to the top frame into the top
frame. Hence, we use U(X,Λ2) to define push(γ′, X). Also, by using the fact that
η1 η2→η1[X B η2] is equal to η1 η2 → η2[(X \X) B η1], we use this alternative
way U(X \X,Λ2) to define pop(γ′, X) for fitting the definition of gluing ⊕.

In addition, the rules 〈q, 〈γ,Λ〉〉 ↪→ 〈q, 〈γ,Λ′〉〉 are added for all q ∈ Q, γ ∈ Γ,
and Λ 4 Λ′ to reflect timed transitions in Stnd.

A stack 〈γ1,Λ1〉〈γ2,Λ2〉 . . . 〈γn,Λn〉 is well-formed WF if for all i ∈ [1..(n−1)]

– Λi |=
•
{ ∈ [0, 0] and there exists Λ′i such that Λi 4 Λ′i and Λ′i ‖ Λi+1.

It can be easily shown that transitions preserve well-formedness. As we men-
tioned above, the condition Λi |=

•
{∈ [0, 0] of the well-formedness is key to ensure

the following property and the determinacy of pop transitions.

Lemma 2. If WF(w〈γ1,Λ1〉〈γ2,Λ2〉), then there exists the unique Λ′1 such that
Λ 4 Λ′1 and Λ′1 ‖ Λ2.

This defines the stack correspondence w ∼ w of Stnd and Coll with WF(w):
– 〈γ, η〉 ∼ 〈γ,Λ〉 if C( •η) = Λ| •X .
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– w〈γ1, η1〉〈γ2, η2〉 ∼ w〈γ1,Λ1〉〈γ2,Λ2〉 if C(•η1 ·∪
•η2) = Λ2|( •X ·∪

•
X ) and w〈γ1, η1〉 ∼

w〈γ1,Λ′1〉 where Λ′1 is uniquely determined from Λ1 and Λ2 by Lemma 2.
This correspondence forms a bisimulation of Stnd and Coll.

Lemma 3. Let 〈q, w〉 and 〈q,w〉 be configurations of Stnd and Coll, respec-
tively, with w ∼ w and WF(w). If 〈q, w〉 � 〈q′, w′〉, then there exists w′ such
that 〈q,w〉 → 〈q′,w′〉 and w′ ∼ w′. Conversely, if 〈q,w〉 → 〈q′,w′〉, then there
exists 〈q′, w′〉 such that 〈q, w〉 � 〈q′, w′〉 and w′ ∼ w′. We used c1 � c2 to
denote a timed transition c1

δ c2 or discrete transition c1
α−→ c2 in Stnd.

4.2 Digital Valuations and Finite-PDS Semantics
The Coll semantics cannot be formalized as finite-PDS for the denseness of
rationals. To remove the denseness, we define digital valuations and give the
digital semantics Digi. The definition is based on regions of Abdulla et al. in [1].

Definition 7 (Digital Valuations). Let X be a clock set. A sequence of sets
d = d0 d1 . . . dn, where di ⊆ X × {0, . . . ,M,∞}, is a digital valuation on X if d
satisfies the following conditions:
– Every clock in X appears in d exactly once.
– Except d0, all the sets di are not empty: di 6= ∅ for all i ∈ [1..n].
– The constant M only appears at d0: if (x,M) ∈ di, then i = 0.
Let λ be a collapsed valuations on X. We write λ |= d if the following hold:

– d reflects collapsed integrals: for all x ∈ X, (x, bλ(x)c) ∈ di holds for some i.
– For all x ∈ X, {λ(x)} = 0.0 iff x is in d0.
– Fractional order: {λ(x)}./{λ(y)} iff x is in di and y is in dj for some i ./ j.
The realization relation |= is functional: for a collapsed valuation λ, there exists
the unique digital valuation D(λ) such that λ |= D(λ).

Let us see an example with M = 1:

{x 7→ 0.0; y 7→ 0.3} 4 {x 7→ 0.5; y 7→ 0.8} 4 {x 7→ 0.7; y 7→ 1.0} 4 {x 7→ 0.9; y 7→ ∞.2}|= |= |= |=

{(x, 0)}{(y, 0)} � ∅{(x, 0)}{(y, 0)} � {(y, 1)}{(x, 0)} � ∅{(y,∞)}{(x, 0)}

The relation d � d′ and other operations are defined just as collapsed valuations.

Proposition 2. Let λ1 and λ2 be collapsed valuations on X. If D(λ1) = D(λ2),
Validity. λ1 |= ϕ iff λ2 |= ϕ for any constraint ϕ except comparison constraints.
Copying. D(λ1[x := y]) = D(λ2[x := y]) for any x, y ∈ X.
Restriction. D(λ1|Y ) = D(λ2|Y ) for any Y ⊆ X.
Integer Update D(λ1[x B n]) = D(λ2[x B n]) for any x ∈ X and n ∈ [0..M].
Elapse If λ1 4 λ′1, then there exists λ′2 such that λ2 4 λ′2 and D(λ′1) = D(λ′2).

We define validity d |= ϕ, copying d[x := y], restriction d|Y , and quasi-ordering
d � d′ similarly as collapsed valuations. Moreover, we define discrete updates
d[x B n] for x ∈ X and n ∈ [0..M] by: d[x B n] , D(λ[x B n]) where λ is a
witness λ |= d. These are well-defined by Proposition 2. We define the update
d[x← I] , {D(λ[x B r] ) : r ∈ I, λ |= d } for a clock x and an interval I.
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Lemma 4. If d � d′ and λ′ |= d′, then there is λ such that λ 4 λ′ and λ |= d.

This lemma is crucial for the backward simulation lemma Lemma 6 and peculiar
to collapsed valuations. Indeed, this fails if we consider η |= d of concrete and
digital valuations. Let us consider d = {(y, 1)}{(x, 0)} � ∅{(y,∞)}{(x, 0)} = d′

and take η′ = {x 7→ 0.9; y 7→ 2.2} for η′ |= d′. There are no concrete valuations
η such that η ≤ η′ and η |= d because y − x < 1 in d but y − x = 1.2 in η′.

Digital Semantics. We use D, . . . to denote a digital valuation on •X ·∪
•
X. As

the semantics Coll, we define the compatibility and gluing as follows:

– We write D1 ‖D2 if ∃Λ1,Λ2. Λ1 |= D1, Λ2 |= D2, and Λ1 ‖ Λ2;
– The glued valuations are defined by:

D1 ⊕D2 , {D(Λ) : Λ1 |= D1, Λ2 |= D2, Λ1 ‖ Λ2, Λ ∈ Λ1 ⊕ Λ2} .
Non-determinism Example. We revisit our running example to see the essential
non-determinism of the gluing in pop.

D1
push(∅)−−−−→Dr

1 D2
x←[1,2]−−−−−→Dr

1 D
′
2

2.0
 Dr

1 D
′′
2

pop({x})−−−−−→D,

Dr
1 =D(Λreset

1 ) = {(
•
{, 0), ( •x, 2)}{( •x, 0)}, D2 = {( •{, 0), ( •x, 0), ( •x, 2)},

D′2 = {( •{, 0), ( •x, 2)}{( •x, 1)}, D′′2 = {( •{, 2), ( •x,∞)}{( •x,∞)}.
To perform pop({x}), we should compute D′1 such that Dr

1 �D′1 and D′1 ‖D′′2
and D′1 = {(

•
{, 2), ( •x,∞)}{( •x,∞)} can be easily obtained. Then,

D′1 ⊕ U(∅,D′′2 ) =
(
{(
•
{, 2), ( •x,∞)}{( •x,∞)}

)
⊕
(
{( •{, 2), ( •x,∞)}{( •x,∞)}

)
= { ∅{( •x,∞), ( •x,∞)}, ∅{( •x,∞)}{( •x,∞)}, ∅{( •x,∞)}{( •x,∞)} } .

Namely there are three choices for D in the order of •x and •x since we dismiss
the fractional values in digital valuations to remove the denseness of rationals.

Digital valuations lead the digital semantics Digi as finite-PDS. Since the
definition is given by the same way as the Coll semantics, we give it in the
appendix. The definition of the well-formedness WF(W ) is also omitted.
Lemma 5. The following properties hold for well-formed stacks.
– If WF(W ) and 〈q,W 〉 → 〈q′,W ′〉, then W ′ is also well-formed.
– If WF(W ), then there exists w such that WF(w) and w |= W .

The realization Λ1 . . .Λn |= D1 . . .Dn holds if Λi |= Di for all i ∈ [1..n].
LetW be a well-formed stack, then there is a well-formed stack WF(w) such that
w |= W by Lemma 5. Since digital valuations are an abstraction of collapsed
valuations, if 〈q,w〉 → 〈q′,w′〉 then there existsW ′ such that 〈q,W 〉 → 〈q′,W ′〉
and w′ |= W ′. By contrast, the counterpart does not hold for the nondetermin-
ism of pop rule in Digi (c.f. the above Example). However, we can show the
following backward-direction lemma by Lemma 4.

Lemma 6. If WF(W ), 〈q,W 〉 → 〈q′,W ′〉, w′ |= W ′, and WF(w′), then there
exists a well-formed stack w such that 〈q,w〉 → 〈q′,w′〉 and w |= W .

Finally, Lemma 3 and 6 imply our main theorem.

Theorem 4. The following are equivalent:
1) In Stnd, there is a run from 〈qinit, 〈⊥,0X 〉〉 to 〈qfinal, w〉 for some stack w;
2) In Digi, there exists W such that 〈qinit, 〈⊥, (D◦C)( •0X ·∪

•
0X)〉〉 →∗ 〈qfinal,W 〉.
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5 Conclusion and Future Works
We have studied synchronized recursive timed automata (SRTA) and shown
that the reachability problem of SRTA is ExpTime-complete. Our SRTA are
described from the two perspectives: 1) SRTA are a variant of recursive timed
automata (RTA) of Trivedi and Wojtczak, and Benerecetti et al. [12, 3] because
SRTA are obtained by synchronizing timed transitions of RTA, 2) SRTA ex-
tend timed pushdown automata of Abdulla et al. [1] because SRTA are obtained
by adding bounded updates (x ← [i, j] and x ← (i, j)), diagonal constraints,
and fractional constraints to their automata. We have also introduced an inter-
mediate semantics and given a two-stage construction to show the decidability
of the reachability problem. The intermediate semantics separated the involved
backward-forward simulation of Abdulla et al. into two simple simulations, and
this made our proof easy to follow.

In the formalization of SRTA, we adopt bounded updates. Since our updates
are performed within an interval, we can simulate diagonal constraints x−y ./ k
in Section 2 by using comparison x ./ y and fractional constraints {x} ./ {y}. As
already proved by Bouyer et al. in [6], the presence of both unbounded updates
x ← [i,∞) and diagonal constraints enables timed automata to simulate two-
counter machines. However, up to the authors’ knowledge, considering the com-
bination of bounded updates, comparison constraints, and fractional constraints
has not been studied yet. We think that this combination further enlarges the
decidable class of pushdown-extensions of timed automata and try to clarify the
decidability of the reachability problem for such the combination.
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A Proof of Theorem 2

We show the following theorem:

Theorem 2. The following language cannot be recognized by any TPDA with
diagonal constraints:

Lex , {(a, t1)(a, t2) . . . (a, tn)(b, t′n) . . . (b, t′2)(b, t′1) : δi ∈ N and δi ≥ δj if i < j} ,
where δi = t′i − ti.

By the result of Clemente and Lasota in [8], we can translate any TPDA with
diagonal constraints T into a corresponding TPDA with an untimed stack Tu
where a configuration of Tu is a triple 〈q, X, γ1 γ2 . . . γn〉. Then Tu can be seen
as a timed automaton with a stack. We first show that the above language Lex
cannot be recognized by any (ordinary) timed automata and next, we extend
an argument for timed automata to show that Lex cannot be recognized by any
TPDA with an untimed stack.

Timed automata and n-clock language

A timed automaton is a tuple A = (Q, qinit, F,Σ, X,∆) where

– Q is a finite set of locations;
– qinit is the initial location; F ⊆ Q is the final locations;
– Σ is a finite input alphabet;
– X is a finite set of clocks;
– ∆ is a finite set of (discrete) transition rules.

Each transition rule is a form of p α,ψ,Y−−−−→ q ∈ ∆ where p and q are in Q,
α ∈ Σ ·∪ {ε}, Y ⊆ X is a subset of X, and ψ ∈ ΨX is a diagonal constraint.
Recall the definition of ΨX :

ψ ::= x ./ k | x− y ./ k | ψ ∧ ψ where x, y ∈ X and k ∈ Z.
A configuration 〈q, ν〉 is a pair of a location q and a valuation ν : X → Q+ on
X. For a configuration 〈p, ν〉, we write 〈p, ν〉 α−→ 〈q, ν′〉 where ν′ = ν[Y := 0] if
ν |= ψ and there is a rule p α,ψ,Y−−−−→ q ∈ ∆. We have another kind of transitions,
timed transitions. Each timed transition increases the values of all the clock of
a configuration by δ ∈ Q+: 〈p, ν〉 δ 〈p, ν′〉 where ν′ , ν + δ.

Runs π and timed words tw(π) of A are defined by the same manner of
TPDA. The language of A is defined by the runs from qinit to qfinal:

L(A) , {tw(π) : π = 〈qinit,0X〉 · · · → 〈qfinal, ν〉, qfinal ∈ F} .
Let A = (Q, qinit, F,Σ, X,∆) be a timed automaton A. If the number of

the clocks in A is n, |X| = n, then we call A a n-clock timed automaton.
Furthermore, if a language L is recognized by a n-clock timed automaton but
not by any m-clock timed automata for m < n, then we call L n-clock language.

Below we will define n-clock languages L1, L2, . . . and see Lex =
⋃
i=1 Li.

These results immediately imply that Lex cannot be recognized by any timed
automata.
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A.1 n-clock timed languages: L1, L2, L3, . . .

We prepare technical lemmas for indistinguishable configurations of timed au-
tomata. Let 〈q, ν〉 and 〈q′, ν′〉 be configurations of a timed automaton. We write
〈q, ν〉 ∼= 〈q′, ν′〉 if these satisfy the following conditions:

– q = q′;
– For all x, y ∈ X, ν(x) ./ ν(y) iff ν′(x) ./ ν′(y).
– For all x ∈ X and k ∈ N, ν(x) ./ k iff ν′(x) ./ k.

It can be verified that if 〈q, ν〉 ∼= 〈q, ν′〉 then there are no constraints ψ ∈ ΨX

such that ν |= ψ and ν′ 6|= ψ. Furthermore, we obtain the property about
reachability.

Lemma A1. Let c1 and c2 be indistinguishable configurations, c1 ∼= c2.
– If c1

α−→ c′1, then there exists c′2 such that c2
α−→ c′2 and c′1 ∼= c′2.

– If c1
δ
 c′1, then there exists δ′ such that c2

δ′

 c′2 and c′1 ∼= c′2.
This immediately implies that if a location q is reachable from c1, then c2 also
reaches q.

Lemma A2. If 〈q, ν〉 δ
 〈q, ν′〉 and there are no clocks x such that {ν′(x)} =

0.0, then there is δ′ such that 0 < δ′ < 1, 〈q, ν〉 δ + δ′ 〈q, ν′′〉, and 〈q, ν′〉∼=〈q, ν′′〉.

Proof. It suffices to take δ′ = M
2 where M = max{1.0− {ν′(x)} : x ∈ X}.

L1 : one-clock timed language

L1 , {(a, t1)(b, t′1) : t′1 − t1 ∈ N} .

For example, (a, 0.0)(b, 1.0), (a, 0.3)(b.2.3), (a, 1.8)(b, 5.8) ∈ L1.
But (a, 0.0)(b, 1.2), (a, 0.3)(b, 2.4), (a, 1.8)(b, 5.9) 6∈ L1. We can show that this
language is recognized by a one-clock timed automaton, and clearly this language
cannot be recognized by any zero-clock timed automata.

L2 : two-clock timed language

The next language L2 cannot be recognized by any one-clock timed automata.

L2 , {(a1, t1)(a2, t2)(b2, t
′
2)(b1, t

′
1) : δ1, δ2 ∈ N, δ1 ≥ δ2} ,

where δi = t′i − ti. For example, (a1, 0.6)(a2, 1.2)(b2, 3.2)(b1, 5.6) ∈ L2 because
of 5.6− 0.6, 3.2− 1.2 ∈ N. But (a1, 0.6)(a2, 1.2)(b2, 3.2)(b1, 5.5) /∈ L2 because of
5.5− 0.6 /∈ L2.

Proposition A1. This language is not a one-clock language.

Proof. Intuitively, we should remember the exact fractional parts of ages of a1
and a2. We use the term age of a symbol ai to denote the time passed after we
receive it from the input stream. However, since there is only a single clock in
one-clock timed automata, we cannot keep both of the values. This implies L2

is not a one-clock language.
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Here, we assume that there is a one-clock automaton A and write x for its
clock. Let us consider the following accepting run π such that tw(π) ∈ L2:

〈qinit,0X〉
δ1 

a1−→ · · · δi a2−→δi+1
 · · ·

δj
 〈q, ν〉 b2−→ 〈q′, ν′〉

δj+1
 · · · δk b1−→δk+1

 · · · ε−→ 〈qf , νf 〉.
Especially, we choose π so that π satisfies: 0 < δj+1 + δj+2 + · · · + δk < 1. We
can do this because L2 contains a word (a1, 0.0)(a2, 0.5)(b2, 1.5)(b1, 2.0) with
0 < 2.0− 1.5 < 1. This condition will be used in the last part of the proof.

〈qinit,0X〉
δ1 

a1−→ · · · δi a2−→
δi+1
 · · ·

δj
 〈q, ν〉 b2−→ 〈q′, ν′〉

δj+1
 · · · δk ︸ ︷︷ ︸

∈(0,1)

b1−→
δk+1
 · · · ε−→ 〈qf , νf 〉.

The proof is showing the following at reading b2:

1. There exists a clock x such that x keeps the exact fractional parts of the age
of a2. Namely, {ν(x)} = 0.0.

2. There exists a clock y such that y keeps the exact fractional parts of the age
of a1. Namely, {ν(y)} = δ1 + δ2 + · · ·+ δj = 1.0− (δj+1 + δj+2 + · · ·+ δk).

3. By 0 < δj+1 + δj+2 + · · · + δk < 1, we cannot achieve both in a one-clock
timed automaton.

If {ν(x)} 6= 0.0, we can find δ from Lemma A2 such that

π′ = c0
δ1 

a1−→ · · · δi a2−→δi+1
 · · ·

δj+δ
 〈q, µ〉 b2−→ 〈q′, µ′〉

where 〈q, ν〉 ∼= 〈q, µ〉 and 〈q′, ν′〉 ∼= 〈q′, µ′〉. By Lemma A1, A reach qf from
〈q′, µ′〉 and accepts tw(π′). However, tw(π′) /∈ L2 because of 0 < δ < 1.

Next, we consider the case {ν(x)} = 0.0 and focus on 〈q, ν〉 b2−→ · · ·︸︷︷︸
∈(0,1)

b1−→ c
as follows:

〈q, ν〉 b2−→ 〈q′, ν′〉
δj+1
 · · · ε−→ 〈p, ϑ〉 δl 〈p, ϑ′〉 ε−→0.0

 
ε−→0.0
 · · · b1−→ 〈qb, νb〉

where δl > 0 and δl is the last non-zero timed transition among 〈q, ν〉 b2−→ · · · b1−→
〈qb, νb〉. If {ϑ′(x)} 6= 0.0, from Lemma A2, we can find δ such that:

π′′ = 〈q, ν〉 b2−→ 〈q′, ν′〉
δj+1
 · · · ε−→ 〈p, ϑ〉 δl+δ 〈p, ϑ′〉 ε−→0.0

 
ε−→0.0
 · · · b1−→ 〈qb, ν′b〉.

By Lemma A1, we obtain 〈qb, νb〉 ∼= 〈qb, ν′b〉 and A reach qf from 〈qb, ν′b〉 . How-
ever tw(π′′) is a word of A, tw(π′′) /∈ L2 because of 0 < δ < 1.

Finally, we consider the case {ϑ′(x)} = 0.0. Now the following hold for

〈q′, ν′〉
δj+1
 · · · ε−→ 〈p, ϑ〉 δl 〈p, ϑ′〉:

0 < δj+1 + δj+2 + · · ·+ δl < 1, δl 6= 0.0, and {ϑ′(x)} = 0.0.

These mean that A never resets x among 〈q′, ν′〉
δj+1
 · · · δl 〈p, ϑ′〉. Indeed,

if A resets x among the computation, then {ϑ′(x)} 6= 0.0 and it contradicts to
{ϑ′(x)} = 0.0. Furthermore, we obtain {ν′(x)} = 1.0−(δj+1+δj+2+· · ·+δl). But,
this implies {ν(x)} 6= 0.0 and makes a contradiction because of {ν(x)} = 0.0. ut

The last technical argument is summarized as follows.
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Lemma A3. Let A be a timed automata and 〈q, ν〉 δ1 · · · δn 〈q′, ν′〉 be a com-
putation.

If


δ1 + δ2 + · · ·+ δn < 1,

{ν′(x)} = 0.0,

δn > 0,

then {ν(x)} = 1− (δ1 + δ2 + · · ·+ δn).

L3 : three-clock timed language

The next language L3 cannot be recognized by any two-clock timed automata.

L3 , {(a1, t1)(a2, t2)(a3, t3)(b3, t
′
3)(b2, t

′
2)(b1, t

′
1) : δ1, δ2, δ3 ∈ N, δ1 ≥ δ2 ≥ δ3} ,

where δi = t′i − ti.

Proposition A2. This language is not a two-clock language.

Proof. We show this proposition by the same argument of Proposition A1. Let
A be a two-clock automaton accepting L3 and we use x and y to denote the
clocks of A. We can choose the following accepting run:

〈qinit,0〉
δ1 · · · a1−→ · · · a2−→ · · · a3−→ · · · δn 〈q, ν〉 b3−→ · · ·︸︷︷︸

d∈(0,1)

b2−→ · · ·

︸ ︷︷ ︸
d′∈(0,1)

b1−→ · · · ε−→ 〈qf , νf 〉

where d < d′ because L3 contains (a1, 0)(a2, 0.5)(a3, 0.25)(b3, 1.25)(b2, 1.5)(b1, 2). As
the same as the proof of Proposition A1, at least one clock z satisfies {ν(z)} =
0.0. Here we assume x satisfies {ν(x)} = 0.0.

Next, we further analysis the computation among 〈q, ν〉 b3−→ · · · ε−→ 〈qf , νf 〉.

〈q, ν〉 b3−→δn+1
 · · · δn+m

 〈q′, ν′〉 ε−→0.0
 

ε−→0.0
 · · · b2−→ 〈qb2 , νb2〉

δk · · · ε−→ 〈qf , νf 〉
where δn+m > 0.0. By the same argument of Proposition A1, a clock z that
satisfies {ν′(z)} = 0.0 is needed. Furthermore, from Lemma A3, {ν(z)} = 1 −
(δn+1 + δn+2 + · · · + δn+m) and {ν(z)} 6= 0.0. Since we have only two clocks,
here we have to use y for this z.

Finally, we consider the following part:

〈q, ν〉 b3−→δn+1
 · · · b2−→ 〈qb2 , νb2〉

δk · · · δk+l
 〈q′′, ν′′〉 ε−→0.0

 
ε−→0.0
 · · · b1−→ 〈qb1 , νb1〉

where δk+l > 0.0. Again, by applying the same argument of a2 and b2 to a1
and b1, a clock z is required such that z satisfies {ν′′(z)} = 0.0. Furthermore,
Lemma A3 implies {ν(z)} = 1− (δn+1 + · · ·+ δn+m)− (δk + δk+1 + · · ·+ δk+l).
However, this requirement cannot be satisfied because we already used x and y
for {ν(x)} = 0.0 and {ν(y)} = 1− (δn+1 + · · ·+ δn+m). ut

The rest of n-clock languages: L4, L5, . . .

We define the other n-clock languages L4, L5, . . . in a similar way as L1, L2, and
L3. Then each language Ln is a n-clock language.
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To apply the same argument of Proposition A1 and A2, we have to ensure a
run of the following form:

π = c0
δ1 · · · a1−→ · · · an−−→ · · · bn−→ · · ·︸︷︷︸

∈(0,1)

b1−→ · · · ε−→ 〈qfinal, ν〉

where tw(π) ∈ Ln. From the definition of Ln, we have the following word in Ln:
(a1, t1)(a2, t2) · · · (an, tn)(an+1, tn+1)(bn+1, t

′
n+1)(bn, t

′
n) · · · (b2, t′2)(b1, t

′
1)

where

– t1 = 0.0 and t′n+1 − tn+1 = 1.0;
– ti+1 − ti = 1− 1/2i for all i ∈ [1..n];
– t′i − t′i+1 = 1/2i for all i ∈ [1..n].

For example,
– (a1, 0) (a2, 1/2) (b2, 3/2) (b1, 2) ∈ L2.
– (a1, 0) (a2, 2/4) (a3, 5/4) (b3, 9/4) (b2, 10/4) (b1, 3) ∈ L3.
– (a1, 0) (a2, 4/8) (a3, 10/8) (a4, 17/8) (b4, 25/8) (b3, 26/8) (b2, 28/8) (b1, 4) ∈ L4.

...

As summary, we obtain the lemma.

Lemma A4. The language Ln is a n-clock language.

Lex : unboundedly many clocks timed language

We revisit
Lex , {(a, t1)(a, t2) . . . (a, tn)(b, t′n) . . . (b, t′2)(b, t′1) : δi ∈ N and δi ≥ δj if i < j} ,
where δi = t′i − ti. This language can be seen as Lex =

⋃
i=1 Li, and thus this

language cannot be recognized by any timed automata.

Theorem A1. The language Lex is not timed automata.

By using the Clemente’s result—each TPDA with diagonal constraints is
translated into a corresponding TPDA with an untimed stack—, we show that
Lex cannot be recognized by any TPDA with diagonal constraints.

We briefly review the definition of TPDA with an untimed stack. TPDA with
an untimed stack Tu is a tuple (Q, qinit, qfinal,Σ,Γ,X ,∆) and a configuration
〈q, X, γ1 γ2 . . . γn〉 is a triple of a location q, a valuation X on X , and a stack
where γi ∈ Γ. Note that there are no rational values in a stack.

There are four kinds of discrete operations for ∆:
push(γ) : 〈p, X, w〉 → 〈q, X, w γ〉,
reset(Y ) : 〈p, X, w〉 → 〈q, X[Y B 0], w〉 where Y ⊆ X ,
pop(γ, ψ) : 〈p, X, w γ〉 → 〈q, X, w〉 if X |= ψ where ψ ∈ ΨX ,

check(ψ) : 〈p, X, w〉 → 〈q, X, w〉 if X |= ψ where ψ ∈ ΨX .
Recall the constraints ψ ∈ ΨX in their system are given as follows:

ψ ::= x ./ k | x− y ./ k | ψ ∧ ψ where x, y ∈ X and k ∈ Z.
As timed automata, we define the notion of indistinguishability and write

〈q, X, w〉 ∼= 〈q′, X′, w′〉 if the following are satisfied:
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– q = q′ and w = w′.
– For all x, y ∈ X, X(x) ./ X(y) iff X′(x) ./ X′(y).
– For all x ∈ X and k ∈ N, X(x) ./ k iff X′(x) ./ k.

Then, the similar lemmas of Lemma A1, Lemma A2, and Lemma A3 hold
for TPDA with an untimed stack. Since, by these lemmas, our proofs of Propo-
sition A1, Proposition A2, and Lemma A4 are also effective for TPDA with an
untimed stack, we obtain the following lemma

Lemma A5. A language Ln cannot be recognized by any m-clock TPDA with
an untimed stack for m < n.

This lemma immediately implies our theorem.
Theorem 2. The following language cannot be recognized by any TPDA with
diagonal constraints:

Lex , {(a, t1)(a, t2) . . . (a, tn)(b, t′n) . . . (b, t′2)(b, t′1) : δi ∈ N and δi ≥ δj if i < j} ,
where δi = t′i − ti.

B Proof of Lemma 2

Lemma 2. If WF(w〈γ1,Λ1〉〈γ2,Λ2〉), then there exists the unique Λ′1 such that
Λ 4 Λ′1 and Λ′1 ‖ Λ2.

Proof. From the well-formedness, Λ1(
•
{) = 0.0 is clear. Then we show the follow-

ing claim:

if Λ1 4 Λ′1, Λ1 4 Λ′′1 , and Λ′1(
•
{) = Λ′′1(

•
{), then Λ′1 = Λ′′1 .

Note that Λ 4 Λ′ iff ∃δ.Λ + δ = Λ′ is trivial from the definition.

Case bΛ′1(
•
{)c 6=∞: Then Λ′1(

•
{) = Λ′′1(

•
{) = (i, r) holds where i ∈ [0..M] and

r ∈ [0, 1). This means that Λ′1 = Λ1 + (i+ r) and Λ′′1 = Λ1 + (i+ r).
Case bΛ′1(

•
{)c =∞: Then Λ′1(

•
{) = Λ′′1(

•
{) = (∞, r) holds where r ∈ [0, 1). In

contrast to the above case, in general, there maybe exist two distinct rationals
δ1 and δ2 such that Λ′1 = Λ1 + δ1, Λ′′1 = Λ1 + δ2. (Here, we assume δ1 > δ2.)
The following is easily verified:
– δ1 − δ2 ∈ N because {Λ′1(

•
{)} = {Λ′′1(

•
{)}.

Hence, {Λ′1(x)} = {Λ′′1(x)} for any x ∈ •X ·∪
•
X.

The condition Λ1(
•
{) = 0.0 means that

•
{ is the minimum clock in Λ1. Now,

bΛ′1(
•
{)c = bΛ′′1(

•
{)c =∞, hence any other clocks are also collapsed: bΛ′1(x)c =

bΛ′′1(x)c =∞ for any x ∈ •X ·∪
•
X.

By combining these {Λ′1(x)} = {Λ′′1(x)} and bΛ′1(x)c = bΛ′′1(x)c = ∞, we
obtain Λ′1 = Λ′′1 .

From the assumption WF(w〈γ1,Λ1〉〈γ2,Λ2〉), there exists Λ′1 such that Λ1 4
Λ′1 and Λ′1 ‖ Λ2. To show the uniqueness of Λ′1, we assume a collapsed valuation
Λ′′1 such that Λ1 4 Λ′′1 and Λ′′1 ‖ Λ2. From the definition, Λ′1(

•
{) = Λ2( •{) = Λ′′1(

•
{).

Then, applying the above claim, we obtain Λ′1 = Λ′′1 . ut
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C Proof of Lemma 4

Lemma 4. If d � d′ and λ′ |= d′, then there is λ such that λ 4 λ′ and λ |= d.

Proof. First, we define the time-passage quasi-ordering for digital valuations in
a different manner. For digital valuations d and d′, the time-passage relation
d ` d′ is defined as follows:

Small Elapse d0 d1 . . . dn ` ∅ d′0 d1 . . . dn if d0 6= ∅ and d′0 satisfies the following:
– If (x,M) ∈ d0, then (x,∞) ∈ d′0; and
– If (x, v) ∈ d0 and v 6= M, then (x, v) ∈ d′0.

Carry ∅ d1 . . . dn−1 dn ` d′n d1 . . . dn−1 if d′n satisfies the following:

– If (x, v) ∈ dn and v < M, then (x, v + 1) ∈ d′n; and
– If (x, v) ∈ dn and v =∞, then (x,∞) ∈ d′n.

Remark: (x,M) ∈ dn never happens from the condition “the constant M
only appears at d0”.

We write d `∗ d′ for the reflexive transitive closure of `. Then the following
claim is easily checked.

Claim (A). For any digital valuations d and d′, d � d′ iff d `∗ d′.

It suffices to show the following property.

Claim (B). If d ` d′ and λ′ |= d′, then there exists λ such that λ 4 λ′ and
λ |= d.

Let η′ be a concrete valuation such that C(η′) = λ′. This claim is shown by case
analysis on d ` d′.

Case d0d1 . . . dn ` ∅d′0d1 . . . dn : From the definition, there exists a clock z such
that z ∈ d0. We write δ to denote λ′(z) and define λ as follows:

λ(x) = (i, r) ⇐⇒ 〈x, i〉 ∈ d ∧ λ′(x) = (i′, r + δ).

(We used 〈x, i〉 ∈ d instead of ∃k ∈ [0..n]. (x, i) ∈ dk.)
Then, it is easily verified that λ |= d, λ+ δ = λ′, and λ 4 λ′.

Case ∅d1 . . . dn−1dn ` d′nd1 . . . dn−1 : From the definition of digital valuations,
there exists a clock z such that z ∈ d1. We write δ for λ′(z)

2 and define λ as
follows:

λ(x) = (i, r) ⇐⇒ 〈x, i〉 ∈ d ∧ λ′(x) = (i′, {r + δ}).

(We used 〈x, i〉 ∈ d instead of ∃k ∈ [1..n]. (x, i) ∈ dk.)
Then, it is easily verified that λ |= d, λ+ δ = λ′, and λ 4 λ′.

Finally, Claim (A) and (B) conclude Lemma 4. ut
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D Missing definitions and proof of Section 4.2

We use D for the set of digital valuations on •X ·∪
•
X

Definition (Digital Semantics Digi). We define the finite-PDS (Q,Γ×D, ↪→)

where 〈q,W 〉 ↪→ 〈q′,W ′〉 if there exists 〈q, τ, q′〉 ∈ ∆ and W
τ
↪−→W ′.

For τ ∈ Op, we define the action W
τ
↪−→W ′ by case analysis on τ as follows:

Dr
1 = D1[

•

{ B 0] Dr
1 ‖D2 D2|

•
X = (D ◦ C)(

•
0X)

〈γ,D1〉 ↪→ 〈γ,Dr
1〉 〈γ′,U(X,D2)〉

push(γ′, X)
D′ ∈D[ •x← I]

〈γ,D〉 ↪→ 〈γ,D′〉 x← I

D1 �D′
1 D′

1 ‖D2 D ∈D′
1 ⊕ U(X \X,D2)

〈γ,D1〉 〈γ′,D2〉 ↪→ 〈γ,D〉
pop(γ′, X)

D |= •ϕ

〈γ,D〉 ↪→ 〈γ,D〉
check(ϕ)

In addition, the rules 〈q, 〈γ,D〉〉 ↪→ 〈q, 〈γ,D′〉〉 are added for all q ∈ Q, γ ∈ Γ,
and D �D′ to reflect timed transitions in Stnd.

As the Coll semantics, we define the well-formedness WF(W ).
A stack 〈γ1,D1〉〈γ2,D2〉 . . . 〈γn,Dn〉 is well-formed WF if for all i ∈ [1..(n− 1)]

– Di |=
•
{ ∈ [0, 0] and there exists D′

i such that Di �D′
i and D′

i ‖Di+1.
Next, we show the backward simulation lemma Lemma 6 below.

Lemma 6. If WF(W ), 〈q,W 〉 → 〈q′,W ′〉, w′ |= W ′, and WF(w′), then there
exists a well-formed stack w such that 〈q,w〉 → 〈q′,w′〉 and w |= W .

D.1 Proof of Lemma 6

To show this lemma, we prepare technical notations.

– We define two renamings ◦ς :
•
X→ X and

◦
ς : •X→ X naturally.

– Let d = d0d1 . . . dn be a digital valuation on
•
X. Then renamed digital valu-

ation ◦
ς(d) on X is defined by naturally: ◦ς(d) , ◦

ς(d0)
◦
ς(d1) . . .

◦
ς(dn).

– For d be a digital valuation on •X, we also define
◦
ς(d) in a similar way.

Let D be a digital valuation on
•
X ·∪ •X. By using these unmarking notations, we

define two extracted digital valuations
◦
D and

◦
D:

◦
D , ◦

ς(D| •X) and
◦
D ,

◦
ς(D| •X).

As an example, let us consider the following digital valuation

D = {(
•
{, 0)}{( •x, 1), (

•
y, 3)}{( •{, 4)}{( •y, 2), ( •x,∞)}.

Then
◦
D = {({, 0)}{(x, 1)}{(y, 2)} and

◦
D = ∅ {(y, 3)}{({, 4)}{(x,∞)}.

Lemma 6. If WF(W ), 〈q,W 〉 → 〈q′,W ′〉, w′ |= W ′, and WF(w′), then there
exists a well-formed stack w such that 〈q,w〉 → 〈q′,w′〉 and w |= W .

Proof. We consider the case time : 〈q,W 〉 → 〈q,W ′〉 because the other rules
push, check, and x← I are not difficult and the rule pop is proved by the same
argument as here.
IfW = D, then 〈q, 〈γ,D〉〉 → 〈q, 〈γ,D′〉〉 whereD �D′. This case is immediate
from Lemma 4.
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Otherwise, 〈q,W 〈γ1,D1〉〈γ2,D2〉〉 → 〈q,W 〈γ1,D1〉〈γ2,D′
2〉〉 where D2 �D′

2.
By Lemma 5, there is a well-formed stack such that w 〈γ1Λ1〉 〈γ2,Λ′2〉 and:

wΛ1 Λ′2 |= WD1D
′
2.

Since Λ1 are collapsed valuations on
•
X ·∪ •X, we can decompose Λ1 as Λ1 = •λ0 ·∪

•
λ1

where λ0 and λ1 are collapsed valuations on X. For the sake of readability, we
rewrite this as Λ1 = 〈λ0, λ1〉 and then the above expression is also rewritten as
follows:

w 〈λ0, λ1〉 〈λ′′1 , λ′2〉 |= WD1D
′
2.

Since D2 � D′
2, by Lemma 4, we can find 〈λ′1, λ2〉 such that 〈λ′1, λ2〉 4

〈λ′′1 , λ′2〉 and 〈λ′1, λ2〉 |= D2. Then, w〈λ0, λ1〉〈λ′1, λ2〉 |= WD1D2 is clear.
Next, we show that w〈λ0, λ1〉〈λ′1, λ2〉 is a well-formed stack. From the well-

formedness WF(w〈λ0, λ1〉〈λ′′1 , λ′2〉), λ1(
•
{) = 0.0 and WF(w〈λ0, λ1〉) is clear. Thus

it suffices to show λ1 4 λ′1.
The reference clock { plays an important role to show λ1 4 λ′1. The following

diagram holds:

λ1 λ′1 λ′′1|= |= |=
d � d′ � d′′

∧ λ1 4 λ′′1 ∧ λ′1 4 λ′′1 ∧ { ∈0 d,

where d =
◦
D1, d′ =

◦
D2, d′′ =

◦
D′2. We write {∈0d to denote that d = d0d1 . . . dn

and ({, 0) ∈ d0.

– d � d′ and d′ � d′′ follow from WF(WD1D2) and D2 �D′
2, respectively.

– λ14λ′′1 and λ′14λ′′1 follow from WF(w〈λ0, λ1〉〈λ′′1 , λ2〉) and 〈λ′1, λ2〉4〈λ′′1 , λ′2〉,
respectively.

– { ∈0 d follows from WF(WD1D2).

By Lemma D1 (this lemma will be shown in the next subsection), λ1 4 λ′1. ut

D.2 The Role of the Reference Clock in Digitized Semantics

Our main statement of this appendix is the following:

λ λ′ λ′′|= |= |=

d � d′ � d′′
∧ λ 4 λ′′ ∧ λ′ 4 λ′′ ∧ (∃x.x ∈0 d) =⇒

λ 4 λ′ 4 λ′′|= |= |=

d � d′ � d′′

From the definition of the quasi-ordering 4, the following desired property fails:
If λ 4 λ′′ and λ′ 4 λ′′, then λ 4 λ′ or λ′ 4 λ. Consider:

λ = {x 7→ 0, y 7→ 1} , λ′ = {x 7→ 0, y 7→ 2} , λ′′ = {x 7→ ∞, y 7→ ∞} .

Since we collapse the domain, distance information of integral parts are lost.
However, the conditions λ |= d recover the integral parts information.

We prepare several notations for the proof of this lemma.
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Let λ and λ′ be collapsed valuations on X.

{λ}(x) , {λ(x)},
bλc(x) , bλ(x)c,
λ + λ′ ⇐⇒ (∃r. {λ} = {λ′ + r}) ∧ (∃r′. {λ+ r′} = {λ′}).

It is easily checked that this relation is an equivalence relation.

Proposition D1. Let λ and λ′ be collapsed valuations on X, and d be a digital
valuation on X. Then the following properties hold clearly.

1. If λ 4 λ′, then λ + λ′.
2. If {λ} = {λ′} and bλc = bλ′c, then λ = λ′.
3. If λ |= d and λ′ |= d, then bλc = bλ′c.
4. If λ + λ′ and ∃x. {λ}(x) = {λ′}(x), then {λ} = {λ′}.

Proposition D2.

λ � λ′|= |=

d = d
∧ (∃x.x ∈0 d) =⇒ λ = λ′.

Proof. λ |= d and λ′ |= d ensures that bλc = bλ′c.
From λ 4 λ′, λ + λ′. Since there exists a clock x such that x ∈0 d, {λ(x)} =

{λ′(x)} = 0.0. By this fact, we obtain {λ} = {λ′} and λ = λ′. ut

Proposition D3.
λ + λ′|= |=

d ` d′
=⇒ λ 4 λ′.

Proof. We proceed by case analysis on d ` d′.

Case ∅ d1 · · · dn−1 dn ` d′n d1 · · · dn−1: There exists a clock x such that x is in
dn. We write δ for 1.0−{λ(x)}. Then, λ′ = λ+ δ is easily verified and hence
λ 4 λ′.

Case d0 d1 · · · dn ` ∅ d′0 d1 · · · dn: Now, there exists a clock x ∈ d0. We write δ
for {λ′(x)}. Then, λ = λ+ δ is easily verified and hence λ 4 λ′.

ut

Proposition D4.
λ + λ′|= |=

d `+ d′
=⇒ λ 4 λ′.

Proof. Base case d ` d′ is shown by Proposition D3.
We consider the induction step:

λ λ′|= |=

d ` d′′ `+ d′
∧ λ + λ′ =⇒ λ 4 λ′.
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From Lemma 4, there exists a valuation λ′′ such that:

λ 4 λ′′ λ′|= |= |=

d ` d′′ `+ d′
.

Then, λ′′ + λ′ from λ 4 λ′′ and λ + λ′. So, we can apply the induction hypothesis
and obtain λ′′ 4 λ′. Finally, from the transitivity of the quasi-ordering 4, we
obtain λ 4 λ′. ut

Lemma D1.
λ λ′ λ′′|= |= |=

d � d′ � d′′
∧ λ 4 λ′′ ∧ λ′ 4 λ′′ ∧ (∃x.x ∈0 d) =⇒

λ 4 λ′ 4 λ′′|= |= |=

d � d′ � d′′

Proof. From the assumption λ 4 λ′′ and λ′ 4 λ′′, λ + λ′ + λ′′ holds.
First, we consider d = d′. Then, this case is immediate from Proposition D2.
Next, we consider d 6= d′ (i.e., d `+ d′). Then, this case is immediate from

Proposition D4. ut
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