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Abstract. We present a new and simple decidability proof for the lan-
guage inclusion problem between context-free languages and languages
accepted by superdeterministic pushdown automata (Sdpdas). The lan-
guage class of Sdpdas is one of the largest language classes C for which
the inclusion Lcfl ⊆ LC is decidable for an arbitrary context-free language
Lcfl and arbitrary language LC in C. We introduce generalized pushdown
automata and reformulate Sdpdas as a subclass of them. This reformu-
lation naturally leads to a monoid that captures Sdpdas. The monoid is
key to our simple decidability proof because we translate the inclusion
problem on Sdpdas to the corresponding monoid inclusion problem. In
addition to the decidability result, we present a new undecidability result
regarding the inclusion problem on indexed languages.

1 Introduction

A superdeterministic pushdown automaton (Sdpda) is a deterministic pushdown
automaton that is finite delay and satisfies a peculiar condition—for any state
p and word w, there is a state q and z ∈ Z such that for any configuration
⟨p, α⟩, if a computation starting from ⟨p, α⟩ ends in ⟨p′, β⟩ after consuming w,
then p′ = q and |α|− |β| = z. Greibach and Friedman showed the decidability of
Incl(Cfl,Sdpda), i.e., the inclusion Lcfl ⊆ L(M) is decidable for an arbitrary
context-free language Lcfl and arbitrary Sdpda M [6]. They also showed that
the language class Sdpda includes some important classes, i.e., the class of
regular languages (Reg), Dyck languages (Dyck), and generalized parenthesis
languages [13]. Moreover, a language class C for which Incl(Cfl, C) is decidable
and C strictly includes Sdpda is not yet known. Our aim is to obtain a simple
decidability proof for Incl(Cfl,Sdpda) and extend it to a larger class. The
original proof [6], however, is elaborated by pumping arguments and it remains
unclear why Incl(Cfl,Sdpda) is decidable.

We introduce generalized pushdown automata (gPDAs) and a subclass, real-
time gPDAs (rgPDAs). Each transition rule of gPDAs is of the form p α/β−−−→σ q,
which consumes an input σ, pops a sequence of symbols α, and then pushes β
to a stack. Although usual pushdown automata require |α| = 1, gPDAs allow
|α| > 1 and pop multiple symbols in one transition. On the basis of the multiple
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pop feature, we translate Sdpdas to rgPDAs that satisfy the following prop-
erty: if we have p α/β−−−→σ q and p α′ / β′

−−−−→σ q′, then q = q′, |α| = |α′|, and |β| = |β′|.
This translation simplifies our decidability proof; thus, rgPDAs with the above
condition are adequate normal forms of Sdpdas.

The formalization of rgPDAs instinctively leads to a monoid for rgPDAs
and this monoid is the basis of our decidability proof. Our approach general-
izes the monoid-based approach for Incl(Cfl,Reg) and Incl(Cfl,Dyck) [11]
where the author applied the classical notion of language recognition by monoids
to translate inclusion problems to corresponding monoid inclusion problems. For
a finite automaton A, there is a finite monoid M, a subset U ⊆ M, and a homo-
morphism H : Σ∗ → M that recognize L(A) as L(A) = H−1(U). This equation
translates the inclusion L(G) ⊆ L(A) to the monoid inclusion H(L(G)) ⊆ U
where G is a context-free grammar. Since M is a finite monoid, we can decide
whether H(L(G)) ⊆ U and this implies the decidability of Incl(Cfl,Reg). This
argument, however, cannot be directly applied to Incl(Cfl,Dyck) because a
monoid that recognizes a Dyck language is infinite. In [11], to manage this un-
avoidable infiniteness, the author rephrased an argument given by Berstel and
Boasson [2] for the decidability of Incl(Cfl,Dyck) in terms of monoids. The
present paper generalizes their argument to accommodate Incl(Cfl,Sdpda)
on the basis of our monoid for rgPDAs. Tsukada and Kobayashi gave a pro-
cedure similar to ours in a type-theoretical framework [14]. We compare our
approach with their type-theoretical approach in Section 6.

Recently, higher-order PDAs [10] have received much attention for their use in
higher-order program verification [8]. Hence, it is a natural attempt to extend the
decidability of Incl(Cfl,Sdpda) to a class of languages accepted by higher-
order PDAs. However, unfortunately, we show that such an attempt is even
undecidable for Incl(IL,Dyck) where IL is the class of indexed languages [1,
7] accepted by second-order PDAs [10].

Context-free Grammar and Normal Form. A context-free grammar (CFG)
is a 4-tuple G = (V,Σ, P, S) where V is a finite set of variables, Σ is a finite set of
terminal symbols, P ⊆ V × (V ∪Σ)∗ is a finite set of production rules, and S ∈ V
is the start variable. We writeX → α instead of (X,α) ∈ P . To denote a one-step
derivation, we write αXβ ⇒ α ξ β if there is a rule X → ξ ∈ P where α, β, ξ ∈
(V ∪ Σ)∗. The words generated by a variable X is L(X) := {w ∈ Σ∗ : X ⇒∗ w}
and the language of G, L(G), is defined by L(G) := L(S).

We primarily use the Chomsky normal form (CNF). A CFG is in CNF if
all of its production rules are of the form X → Y Z, X → σ, or S → ϵ where
X,Y, Z ∈ V and σ ∈ Σ. By the standard translation from CFG to CNF [7],
we assume that each variable X is reachable, i.e., there exists a pair of terminal
strings (w1, w2) such that S ⇒∗ w1Xw2.

2 Generalized PDA and Superdeterministic PDA

First, we introduce generalized pushdown automata (gPDAs). Next, we define
realtime gPDAs (rgPDAs) and a monoid for gPDAs. Third, we define push-



Monoid-based Approach to the Inclusion Problem on SDPDAs 3

down automata (PDAs) as a subclass of gPDAs and superdeterministic PDAs
(Sdpdas) by following [6]. Finally, after pointing out a problem in the formal-
ization of Sdpdas, we translate Sdpdas into rgPDAs.

Generalized PDA. A gPDA is a 7-tuple M = (Q,Σ,Γ,∆, qinit,F , Z) where
Q is a finite set of states, Σ is a finite input alphabet, Γ is a finite stack alphabet,
∆ ⊆ (Q× (Σ ∪ {ϵ}) ∪ Γ+)× (Q× Γ∗) is a finite set of transition rules, qinit ∈ Q
is the initial state, F ⊆ Q× Γ∗ is a finite set of final configurations, and Z ∈ Γ
is the initial stack symbol. We use Γ+ to denote Γ∗ \ {ϵ}.

A configuration c is a pair ⟨p, α⟩ ∈ Q × Γ∗ of a state p and a stack α. We
define the set of transitions T := Q×Γ∗×Γ∗×Q and write p α/β−−−→ q to denote a
transition (p, α, β, q) ∈ T. A transition δ = p α/β−−−→ q rewrites a configuration c to
another one c′ as c δ↪−→ c′ if c = ⟨p, αξ⟩, c′ = ⟨q, βξ⟩, and ξ ∈ Γ∗. We use ∆ as a
function from Σ∪{ϵ} to 2T defined by ∆(a) := {p α/β−−−→ q : ((p, a, α), (q, β)) ∈ ∆}.

We define a single move c a c′ if c δ↪−→ c′ for some δ ∈ ∆(a) where a ∈ Σ∪{ϵ}
and a multiple move c1 a1a2...an

∗
cn+1 if ci ai

ci+1 for all i ∈ [1..n]. The language
of M , L(M), is defined as follows:

L(M) := {w ∈ Σ∗ : ⟨qinit, Z⟩ w
∗ ⟨qf , ξ⟩, ⟨qf , ξ⟩ ∈ F}.

Realtime gPDA and Transition Monoid. We introduce a subclass of
gPDAs, realtime gPDAs, and define a monoid and homomorphism to recognize
the language accepted by a realtime gPDA.

A gPDA M = (Q,Σ,Γ,∆, qinit,F , Z) is realtime (rgPDA) if there are no
ϵ-moves; namely, ∆ ⊆ (Q× Σ× Γ+)× (Q× Γ∗).

We define a composition operator ⊙ on T⊥(= T ∪ {⊥}) as follows:

δ1 ⊙ δ2 :=


p α/ ζξ−−−→ r if δ1 = p α/βξ−−−−→ q and δ2 = q β / ζ−−−→ r,

p αξ / ζ−−−→ r if δ1 = p α/β−−−→ q and δ2 = q βξ / ζ−−−→ r,

⊥ otherwise,

⊥⊙ _ := ⊥,

_ ⊙⊥ := ⊥,

where the element ⊥ denotes a composition failure, e.g., p a / b−−→ q⊙ q c / d−−→ r = ⊥
because it means to push b to a stack and then try to pop c but we cannot.

The operator ⊙ : T⊥ × T⊥ → T⊥ is associative; thus, the pair (T⊥,⊙)
forms a semigroup. This semigroup leads to a monoid TM for the rgPDA M :
TM := (2T,⊗,1 = {q ϵ / ϵ−−→ q : q ∈ Q}) where the multiplication ⊗ is defined by
extending ⊙ to the sets of transitions:

T1 ⊗ T2 := {δ1 ⊙ δ2 : δ1 ∈ T1, δ2 ∈ T2, δ1 ⊙ δ2 ̸= ⊥}.

Since there are no ϵ-moves in rgPDAs, we can see ∆ as a function ∆ : Σ → 2T

and this derives a homomorphism
∼
∆ : Σ∗ → TM as follows:

∼
∆(ϵ) := 1,

∼
∆(σ) := ∆(σ),

∼
∆(σ1 . . . σn) := ∆(σ1)⊗ · · · ⊗∆(σn).

The homomorphism
∼
∆ naturally interprets moves of M as follows.
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Proposition 1. – If p α/β−−−→ q ∈
∼
∆(w), then ⟨p, αξ⟩ w

∗ ⟨q, βξ⟩ for any ξ ∈ Γ∗.
– If ⟨p, α⟩ w

∗ ⟨q, β⟩, then there exists ξ ∈ Γ∗ such that α = α′ξ, β = β′ξ, and
p α′ / β′
−−−−→ q ∈

∼
∆(w).

Thus, the homomorphism
∼
∆ recognizes the language L(M).

Lemma 2. L(M) =
∼
∆
−1

({T : qinit
Z / ξ−−−→ qf ∈ T, ⟨qf , ξ⟩ ∈ F}).

Note that
∼
∆(w) is finite for any w ∈ Σ∗ because ∆(σ) is finite for any σ ∈ Σ.

This finiteness is important to obtain a decision procedure for inclusion problems.
Although we can show properties similar to Proposition 1 for gPDAs, we require
ϵ-closures to build a homomorphism H and then H(w) is infinite in general. The
existence of ϵ-moves is harmful to give a decision procedure.

PDA and Deterministic PDA. A gPDA M = (Q,Σ,Γ,∆, qinit,F , Z) is a
pushdown automaton (PDA) if ∆ ⊆ (Q× (Σ∪ {ϵ})× Γ)× (Q× Γ∗). In contrast
to gPDAs, PDAs cannot pop multiple symbols in a single move.

A PDA M is deterministic (DPDA) if M satisfies the following conditions:
– For each a ∈ Σ ∪ {ϵ}, if c1 a c2 and c1 a c3, then c2 = c3.
– If we have c1 ϵ c2, then c1 ̸ σ c3 for all σ ∈ Σ and c3 ∈ Q× Γ∗.

A configuration c is a reading configuration if c σ c′ for some σ ∈ Σ. To empha-
size a move between reading configurations, we write c w

∗
c′ instead of c w

∗
c′

where c and c′ are reading configurations.

Superdeterministic PDA. A DPDA M is superdeterministic (Sdpda) [6] if
M satisfies the following conditions:

1. M accepts words with the empty stack: if ⟨qf , ξ⟩ ∈ F , then ξ = ϵ.
2. M is finite delay, i.e., any sequence of ϵ-moves is d-bound for some d ∈ N:

there are no configurations c such that c = c0 ϵ c1 ϵ · · · ϵ cd−1 ϵ cd.
3. Let σ ∈ Σ and ⟨p, α⟩ and ⟨p, α′⟩ be reading configurations with the same state.

If ⟨p, α⟩ σ
∗ ⟨q, β⟩ and ⟨p, α′⟩ σ

∗ ⟨r, β′⟩, then q = r and |α| − |β| = |α′| − |β′|.

As mentioned above, the presence of ϵ-moves in the formalization of Sdpdas
prevents us from directly defining a homomorphism that recognizes L(M). Thus,
we remove ϵ-moves from Sdpdas by translating them to rgPDAs.

Theorem 3. Let M = (Q,Σ,Γ,∆, qinit,F , Z) be an Sdpda. There exists rg-
PDA N such that (1) $L(M) = L(N) where $ /∈ Σ and (2) if p α/β−−−→ q ∈ ∆N (σ)

and p α′ / β′
−−−−→ r ∈ ∆N (σ), then q = r, |α| = |α′|, and |β| = |β′|.

Proof. We can easily translate M to an Sdpda M ′ that satisfies the following:

M : ⟨qinit, Z⟩ w
∗ ⟨qf , ϵ⟩ ⇐⇒ M ′ : ⟨q′init, ♮⟩ ϵ ⟨qinit, Z♮⟩ w

∗ ⟨qf , ♮⟩ ϵ ⟨q′f , ϵ⟩

where ⟨qf , ϵ⟩ ∈ F and the two states q′init, q
′
f /∈ Q are the unique initial and final

states of M ′. Thus, L(M) = L(M ′). We assume that M ′ is d-bound and the
special symbol ♮ /∈ Γ is the stack bottom symbol of M ′.
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We take the ϵ-closure of the initial configuration of M ′. If ⟨q′init, ♮⟩ ϵ
∗ ⟨q, ϵ⟩,

then L(M ′) = ∅ or L(M ′) = {ϵ} and these cases are easy. We assume ⟨q′init, ♮⟩ ϵ
∗

⟨q⋆, α⋆♮⟩ where ⟨q⋆, α⋆♮⟩ is a reading configuration. If σ1 . . . σnσn+1 ∈ L(M ′),
then we have ⟨q′init, ♮⟩ ϵ

∗ ⟨q⋆, α⋆♮⟩ σ1

∗ ⟨q1, α1♮⟩ σ2

∗ · · · σn

∗ ⟨qn, αn♮⟩ σn+1

∗ ⟨q′f , ϵ⟩.
We build an rgPDA N = (Q∪{q′′init, q

′
f},Σ∪{$},Γ∪{♮, ♯},∆N , q

′′
init,FN , ♮)

as follows. Let p ∈ Q and σ ∈ Σ. SinceM ′ is finite delay, we can compute two sets
A = {(q, α, β) : ⟨p, α⟩ σ

∗ ⟨q, β⟩, β ̸= ϵ} and B = {(q′f , ξ♮) : ⟨p, ξ♮⟩ σ c ϵ
∗ ⟨q′f , ϵ⟩}.

Since M ′ is an Sdpda, (when A ̸= ∅) there are r ∈ Q and k ∈ Z such that if
(q, α, β) ∈ A, then q = r and |α| − |β| = k. We add transitions to ∆N as follows:

– Let (r, α, β) ∈ A. Add p αζ / βζ−−−−→ r ∈ ∆N (σ) where αζ ∈ Γ∗♮∗ and |αζ| = d.
– Let (q′f , ξ♮) ∈ B.

Case A ̸= ∅: Add p ξ♮♮i / ♯♮j−−−−−→ r ∈ ∆N (σ) where i = d−|ξ♮| and j = (d−k)−1.
Case A = ∅: Add p ξ♮♮i / ♯−−−−→ q′f ∈ ∆N (σ) where i = d− |ξ♮|.

This construction ensures that (i) if p α/β−−−→ q, p α′ / β′
−−−−→ q′ ∈ ∆N (σ), then q = q′,

|α| = |α′|, and |β| = |β′|, (ii) ⟨q⋆, α⋆♮⟩ σ1...σn

∗ ⟨qn, αn♮⟩ σn+1

∗ ⟨q′f , ϵ⟩ in M ′ iff
q⋆

α⋆♮
d / ♯♮c−−−−−−→ r ∈ ∆N (σ1 . . . σnσn+1) for some c ∈ [1..d] and r ∈ Q.

We define ∆N ($) := {q′′init
♮ / α⋆♮

d

−−−−−→ q⋆} so that ⟨q′init, ♮⟩ σ1...σn+1

∗ ⟨q′f , ϵ⟩ in M ′

iff q′′init
♮ / ♯♮c−−−→ r ∈ ∆N (σ1 . . . σn+1) for some c ∈ [1..d] and r ∈ Q. By defining

FN := {⟨p, ♯♮c⟩ : p ∈ Q ∪ {q′f}, c ≤ d}, we have $L(M ′) = L(N). ⊓⊔

We call the following condition of Theorem 3 a uniformity condition that is
stronger than the third condition of Sdpdas:

If p α/β−−−→ q, p α′ / β′
−−−−→ r ∈ ∆(σ), then |α| = |α′|, |β| = |β′|, and q = r.

We denote rgPDAs that satisfy the uniformity condition as rgPDA+U.
The normalization through Theorem 3 and the uniformity condition are cru-

cial for the proof of our key lemma, Lemma 9 of Section 4. A construction similar
to Theorem 3 appears in [14, Theorem 10]. However, they normalized an Sdpda
to a corresponding Sdpda that satisfies a property like the uniformity condition;
thus, they did not remove ϵ-moves in their proof.

3 Decidability of Incl(Cfl,Dyck) Revisited

Before giving a decision procedure for Incl(Cfl,rgPDA+U), we consider the
subcase Incl(Cfl,Dyck). We rephrase the decidability proof of Incl(Cfl,
Dyck) given by Berstel and Boasson [2] as a constraint solving problem on
a monoid for the Dyck languages. The argument of this section will be naturally
extended to Incl(Cfl,rgPDA+U) in the next section.

Dyck Language. Let Σ be a finite alphabet Σ = {σ1, . . . , σn}. We use σ́ and
σ̀ to denote an open and a close parenthesis labelled by σ, respectively, by fol-
lowing [13]. We define the open parentheses Σ́ and close parentheses Σ̀ obtained
from Σ by Σ́ := {σ́1, . . . , σ́n} and Σ̀ := {σ̀1, . . . , σ̀n}. A word w ∈ (Σ́ ∪ Σ̀)∗ is a
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Dyck word if w is well-matched. For example, áà and áb́b̀à are Dyck words, but
àá and áb̀ are not. To formally define this, we build a monoid and homomorphism
that recognize the set of Dyck words.

We define a function µ : Σ́ ∪ Σ̀ → T∗ where T∗ = {∗} × Σ∗ × Σ∗ × {∗} by
interpreting a open parenthesis σ́ and close parenthesis σ̀ as transitions of push
σ and pop σ: µ(σ́) := ∗ ϵ / σ−−−→∗ and µ(σ̀) := ∗ σ / ϵ−−−→∗. For the sake of readability,
we write α/β to denote ∗ α/β−−−→∗. The triple D = (T∗ ∪ {⊥},⊙,1 = ϵ/ϵ) forms
a monoid because δ ⊙ ϵ/ϵ = ϵ/ϵ⊙ δ = δ for any δ ∈ T∗ ∪⊥. We call the monoid
D Dyck monoid and deal the function µ as a homomorphism µ : (Σ́∪ Σ̀)∗ → D.
For example, µ(ϵ) = µ(áà) = µ(áb́b̀à) = ϵ/ϵ, µ(àá) = a/a, and µ(áb̀) = ⊥.

A word w ∈ (Σ́ ∪ Σ̀)∗ is a Dyck word if µ(w) = ϵ/ϵ; thus the Dyck language
over Σ is defined as Dyck(Σ) := µ−1({ϵ/ϵ}).

Inclusion Problem as Constraint Solving. We fix a CFG G = (V, Σ́ ∪ Σ̀,
P, S) and provide a procedure to decide whether L(G) ⊆ Dyck(Σ). For this
purpose, we consider the equivalent monoid inclusion µ(L(G)) ⊆ {ϵ/ϵ} that is
obtained from Dyck(Σ) = µ−1({ϵ/ϵ}). We introduce a notation to solve this.

A mapping φ : V → 2D is a solution if it satisfies the following constraint
over the Dyck monoid D:

∀X ∈ V.

{
φ(X) ⊇ {µ(w)} if X → w ∈ P ,
φ(X) ⊇ φ(Y )⊙ φ(Z) if X → Y Z ∈ P .

If φ is a solution, then φ(X) ⊇ µ(L(X)) holds for all variable X. Thus, it suffices
to search a solution φ such that φ(S) ⊆ {ϵ/ϵ} to solve µ(L(G)) ⊆ {ϵ/ϵ}.

Proposition 4. µ(L(G)) ⊆ { ϵ/ϵ } if and only if ∃(φ : solution). φ(S) ⊆ { ϵ/ϵ }.

By this proposition, if we find a solution φ satisfying φ(S) ⊆ { ϵ/ϵ }, we can
decide whether L(G) ⊆ Dyck(Σ). Unfortunately, however, we cannot find such
a solution φ directly in general because the Dyck monoid D is infinite and thus
the set of mappings is infinite.

A Procedure for Incl(Cfl,Dyck). In order to limit the space in which we
explore solutions, we rephrase a result of Berstel and Boasson [2], which shows
the decidability of Incl(Cfl,Dyck), in our framework.

For each variable X, there exists a pair of terminal strings w1, w2 ∈ (Σ́∪ Σ̀)∗

such that S ⇒∗ w1Xw2 because each variable of CFGs is reachable. We define
K(X) := (w1, w2) by taking such a pair of terminal strings for each variable.
Note that our argument does not depend on the choice of terminal strings. The
pair of terminal strings K(X) serves as an upper-bound for µ(L(X)) as follows.

Lemma 5 ([2]). Let K(X) = (w1, w2) and w ∈ L(X). If the following holds,
then w1ww2 ∈ L(G) \Dyck(Σ):

µ(w) = ⊥ or µ(w) = α/β such that |α| > |w1| or |β| > |w2|.
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Proof. We use the property µ(w1w2w3) = µ(µ(w1)µ(w2)µ(w3)). By this prop-
erty, if µ(w1) = ⊥, µ(w) = ⊥, or µ(w2) = ⊥, then µ(w1ww2) ̸= ϵ/ϵ.

By the definition of the operator ⊙, if α1/β1 ⊙ α2/β2 = α3/β3, then |α3| ≥
|α1| and |β3| ≥ |β2|. Thus, we can assume µ(w1) = ϵ/σ1 . . . σn and µ(w2) =
σ1 . . . σm/ϵ where n,m ≥ 0. If not, we have µ(w1ww2) ̸= ϵ/ϵ. Moreover, by the
definition of µ, we have |w1| ≥ n and |w2| ≥ m.

If |α| > |w1| ≥ n, then µ(w1w) = σ′
1 . . . σ

′
|α|−n/β or µ(w1w) = ⊥; thus,

µ(w1ww2) ̸= ϵ/ϵ. Similarly, if |β| > |w2| ≥ m, then µ(ww2) = α/σ′
1 . . . σ

′
|β|−m or

µ(ww2) = ⊥; thus, µ(w1ww2) ̸= ϵ/ϵ. These arguments complete the proof. ⊓⊔

Lemma 5 states that the space in which we explore solutions is finitely
bounded and this leads to the decidability of Incl(Cfl,Dyck). To formally
state this argument, we introduce bounded mappings.

A mapping φ is bounded by K if it satisfies the following property:

∀X ∈ V. ∀α/β ∈ φ(X). |α| ≤ |w1| and |β| ≤ |w2| where K(X) = (w1, w2).

We can solve the inclusion problem by searching an adequate bounded solution.

Theorem 6.

µ(L(G)) ⊆ { ϵ/ϵ } ⇐⇒ ∃(φ : solution). φ(S) ⊆ { ϵ/ϵ }
⇐⇒ ∃(φ′ : bounded solution). φ′(S) ⊆ { ϵ/ϵ }.

Proof. It suffices to show that if a solution φ satisfies φ(S) ⊆ { ϵ/ϵ }, then φ must
be bounded. If not, then there exists w ∈ L(X) such that |w1| > |α| or |w2| > |β|
where µ(w) = α/β and K(X) = (w1, w2). By Lemma 5, w1ww2 /∈ Dyck(Σ) and
L(G) ̸⊆ Dyck(Σ). However, the presence of φ implies L(G) ⊆ Dyck(Σ). ⊓⊔

Proposition 7. The set of bounded mappings {φ : φ is bounded by K} is finite.

Since we can decide whether a given bounded mapping is a solution, Theorem 6
and Proposition 7 imply the following result.

Corollary 8 ([2]). The inclusion problem Incl(Cfl,Dyck) is decidable.

4 Decidability of Incl(Cfl,rgPDA+U)

On the basis of the argument of the previous section, this section provides a
procedure to decide whether L(G) ⊆ L(M) where G = (V,Σ, P, S) is a CFG
and M = (Q,Σ,Γ,∆, qinit,F , Z) is an rgPDA+U.

A Property Corresponding to Lemma5. We show a crucial property that
corresponds to Lemma 5 and limits a space of mappings in which we explore a
solution. To state it formally, we use three constants Push, Pop, and H where

∀σ ∈ Σ.∀p α/β−−−→ q ∈ ∆(σ).
(
Push ≥ |β| ∧ Pop ≥ |α|

)
; ∀⟨qf , ξ⟩ ∈ F . H ≥ |ξ|.

Push and Pop are upper bounds of the numbers of symbols that are pushed
onto or popped from a stack in a single move. H is an upper bound of the heights
of final configurations.
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Lemma 9. Assume that S ⇒∗ w1Xw2, qinit
α/β−−−→ p ∈

∼
∆(w1), and w ∈ L(X).

If the following holds, then w1ww2 ∈ L(G) \ L(M):

There is p α
′ / β

′
−−−−→ q ∈

∼
∆(w) such that |α′| > Push · |w1| or |β′| > Pop · |w2|+H.

Proof. If M fails to consume w1, then it means w1ww2 /∈ L(G). Hence, we
assume M succeeds on consuming w1 and have ⟨qinit, Z⟩ w1

∗ ⟨p, ξ⟩ where |ξ| =
|β| ≤ Push · |w1| by the uniformity condition of M .

First, we consider the case |α′| > Push · |w1| ≥ |ξ|. By the uniformity condi-
tion, M have to pop just |α′|-symbols from the stack while reading w. However,
after consuming w1, i.e., ⟨qinit, Z⟩ w1

∗ ⟨p, ξ⟩, we have only |ξ|-symbols on its stack.
Thus, M cannot pop |α′|-symbols and w1ww2 /∈ L(M).

Next, we consider the case |β′| > Pop · |w2|+H. We assume that M succeeds
on consuming w1w and ⟨qinit, Z⟩ w1w

∗ ⟨q, ζ⟩ where |ζ| = |β|−|α′|+ |β′| and |β| ≥
|α′|. If M succeeds on consuming w2 from ⟨q, ζ⟩, then M pops at most (Pop ·
|w2|)-symbols: ⟨qinit, Z⟩ w1ww2

∗ ⟨r, ζ ′⟩ where |ζ ′| ≥ |ζ| −Pop · |w2|. Furthermore,
we have ζ ′ > H because |ζ| ≥ |β′| > Pop · |w2|+H, and so w1ww2 /∈ L(M). ⊓⊔

This lemma provides upper-bounds for states p and variables X if there exists
a pair of terminal strings (w1, w2) such that S ⇒∗ w1Xw2 and qinit

α/β−−−→ p ∈
∼
∆(w1); in other words, we need a witness (w1, w2) to use this lemma. How-
ever, unfortunately, the following proposition says that we cannot compute
such pairs (w1, w2) in general; thus, we cannot use this lemma directly for
Incl(Cfl,rgPDA+U).

Proposition 10. Let p be a state and X be a variable. It is unsolvable to decide
if there is a pair (w1, w2) such that S ⇒∗ w1Xw2 and qinit

α/β−−−→ p ∈
∼
∆(w1).

To bypass this undecidability, we consider an underlying automaton of M
where properties similar to Lemma 9 and Proposition 10 hold.

Underlying Automaton. We obtain the underlying automaton ofM by forget-
ting the stack contents from the transition rules ofM , i.e., a rule p α/β−−−→ q ∈ ∆(σ)

is translated to p σ−→ q in the underlying automaton. The underlying automaton
is a pair AM = (Q,E) where Q is the set of states of M and E ⊆ Q×Σ×Q has
an edge p σ−→ q if p α/β−−−→ q ∈ ∆(σ) for some α, β ∈ Γ∗. As the usual notation of
finite automata, we write p w−→ q if w = σ1σ2 . . . σn and p = p0

σ1−→ p1
σ2−→ p2

σ3−→
· · · σn−−→ pn = q. By the uniformity condition of M , AM is deterministic.

A state q is quasi-reachable to a variable X if there exists a pair (w1, w2) such
that S ⇒∗ w1Xw2 and qinit

w1−−→ q. The next proposition says that we can deter-
mine if a given state q is quasi-reachable to X, and it means that Proposition 10
is solvable in the underlying automaton. A similar construction to consider un-
derlying automata appears in [14, Theorem 8]. It seems that in [14] they also
adopted such a construction to avoid the undecidable result of Proposition 10.

Proposition 11. There is a partial function K :Q× V ⇀ Σ∗ × Σ∗ such that:
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– If K(p,X) = (w1, w2), then S ⇒∗ w1Xw2 and qinit
w1−−→ p in AM .

– If K(p,X) is undefined, then p is not quasi-reachable to X.

Proof. For a variable X, the language LX = {w1#w2 : S ⇒∗ w1Xw2, wi ∈ Σ∗}
is context-free. For a state p, the language Lp = {w#w′ : qinit

w−→ p, w′ ∈ Σ∗}
is regular. Hence, the intersection LX ∩ Lp is a context-free language. By the
decidability of the emptiness problem of context-free languages, we can decide
whether p is quasi-reachable to X and compute a witness (w1, w2). ⊓⊔

Furthermore, the property corresponding to Lemma 9 holds.

Lemma 12. Assume that K(p,X) = (w1, w2) and w ∈ L(X). If the following
holds, then w1ww2 ∈ L(G) \ L(M):

There is p α
′ / β

′
−−−−→ q ∈

∼
∆(w) such that |α′| > Push · |w1| or |β′| > Pop · |w2|+H.

A Procedure for Incl(Cfl,rgPDA+U). Although Lemma 12 constrains the
pairs of a state p and variable X where p is quasi-reachable to X, this lemma
does not constrain non quasi-reachable states. To avoid this problem, we redefine
bounded mappings whose codomain is bounded by K.

For a mapping ψ : V → 2TM , we define the restriction ψ ↾K : V → 2TM :

(ψ ↾K)(X) := {T ∩ KX : T ∈ ψ(X)}, KX := { p α/β−−−→ q : K(p,X) is defined}.

A mapping ψ is bound by K if ψ = ψ ↾K and ψ satisfies the following:

∀X ∈ V. ∀T ∈ ψ(X).∀p α/β−−−→ q ∈ T.

[
|α| ≤ Push · |w1| ∧ |β| ≤ Pop · |w2|+H

where K(p,X) = (w1, w2).

]
Proposition 13. The set of bounded mappings {ψ : ψ is bound by K} is finite.

A mapping ψ is a solution if it satisfies the following constraint over the
transition monoid TM of M :

∀X ∈ V.

{
ψ(X) ⊒ {

∼
∆(w)} if X → w ∈ P ,

ψ(X) ⊒ ψ(Y )⊗ ψ(Z) if X → Y Z ∈ P .

where F1 ⊒ F2 if ∀T2 ∈ F2. ∃T1 ∈ F1. T1 ⊆ T2. If ψ is a solution, then ψ(X) ⊒
∼
∆(L(X)) for all variable X.

The reason why we redefine solutions is to establish the following property.
Indeed, even if ψ(X) ⊇

∼
∆(L(X)), then (ψ ↾K)(X) ̸⊇

∼
∆(L(X)) in general.

Proposition 14. If a mapping ψ is a solution then ψ ↾ K is also a solution.

This proposition is crucial to obtain our main theorem.

Theorem 15. L(G) ⊆ L(M) ⇐⇒
∃(ψ : solution). ψ(S) ⊆ {T : qinit

Z / ξ−−−→ qf ∈ T, ⟨qf , ξ⟩ ∈ F} ⇐⇒
∃(ψ′ : bounded solution.). ψ′(S) ⊆ {T : qinit

Z / ξ−−−→ qf ∈ T, ⟨qf , ξ⟩ ∈ F}.
As with Incl(Cfl,Dyck), to decide if L(G) ⊆ L(M), it suffices to explore

a solution in the finite set of bounded mappings. This implies our main result.

Corollary 16. The inclusion problem Incl(Cfl,rgPDA+U) is decidable.
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5 Attempt at Generalization or Undecidability

We have given a decidability proof of Incl(Cfl,Sdpda) where each problem
is of the form L(G) ⊆ L(M). One possible generalization is to consider the
inclusion of the form L(G) ⊆ L′(M) where L′(M) is the language defined by
L′(M) := {w : ⟨qinit, Z⟩ w

∗ ⟨qf , α⟩, ⟨qf , ϵ⟩ ∈ FM , α ∈ Γ∗}. However, as Friedman
and Greibach showed in [5], the above problem becomes undecidable. Indeed,
the empty-stack acceptance condition is crucial in the proof of Lemma 9.

The second attempt is to replace the third condition of Sdpdas by the con-
dition: if ⟨p, α⟩ σ

∗ ⟨q, β⟩ and ⟨p, α′⟩ σ
∗ ⟨r, β′⟩, then q = r but maybe |α| − |β|

̸= |α′|−|β′|. The relaxed condition enables us to simulate simple machines. A re-
altime DPDA M is a simple machine if M has only one state and accepts words
by the empty-stack. Since simple machines are realtime DPDAs that satisfy the
above relaxed condition, the undecidability of the inclusion problem on simple
machines [4] implies the undecidability of the inclusion problem between CFGs
and the relaxed Sdpdas. A similar argument shows that the inclusion problem
also becomes undecidable if we adopt the following condition: if ⟨p, α⟩ σ

∗ ⟨q, β⟩
and ⟨p, α′⟩ σ

∗ ⟨r, β′⟩, then |α| − |β| = |α′| − |β′| but maybe q ̸= r.
These results illustrate the difficulty of finding a class of languages B that

makes Incl(Cfl,B) decidable with Sdpda ⊊ B. Now we consider finding a
class A such that Cfl ⊊ A and Incl(A,Sdpda) is decidable. For this purpose,
we consider the class IL of indexed languages [1, 7]. This class and higher-order
indexed languages [10] is known as a natural generalization of Cfl and have
received attention for higher-order program verification [8]. If we could solve
Incl(IL,Sdpda), then this becomes a base for program verification. However,
unfortunately, the inclusion problem on IL is unsolvable for Incl(IL,Dyck).

An indexed grammar is a 5-tuple G = (V,Σ, F, S, P ) where V = {A,B, . . .}
is a finite set of variables, S ∈ V is the start variable, Σ = {σ1, σ2, . . .} is a
finite set of terminal symbols, and F = {f, g, . . .} is a finite set of indices, and
P is a finite set of production rules [1, 7]. Each rule in P is one of the following:
A → BC, Af → B, A → Bf , A → σ where A,B,C ∈ V , f ∈ F , and σ ∈ Σ. A
sentential form ψ is of the form ψ = α1(A1, x1)α2(A2, x2) . . . αn(An, xn)αn+1 ∈
(Σ∪(V ×F ∗))∗ where αi ∈ Σ∗ and (Ai, xi) ∈ V ×F ∗. Instead of (A, x) ∈ V ×F ∗,
we write Ax. Each production rule rewrites a sentential form as follows: (1) a
rule A→ BC rewrites as ψ1Axψ2 ⇒ ψ1BxCxψ2, (2) a rule Af → B rewrites as
ψ1Afxψ2 ⇒ ψ1Bxψ2, (3) a rule A → Bf rewrites as ψ1Axψ2 ⇒ ψ1Bfxψ2, and
(4) a rule A → σ rewrites as ψ1Axψ2 ⇒ ψ1σψ2. The language of an indexed
grammar G is defined by L(G) := {w ∈ Σ∗ : S ⇒∗ w}. The class of indexed
languages IL is the languages generated by indexed grammars.

To obtain the undecidability of Incl(IL,Dyck), we use an undecidability
result of DT0L-systems. A DT0L-system is a tuple G = (Σ, g1, . . . , gn, α) where
Σ is a finite alphabet, gi : Σ∗ → Σ∗ is a homomorphism for each i ∈ [1..n], and
the non-empty word α ∈ Σ+ is the axiom of G [12]. On a DT0L G, we define
the function FG : [1..n]∗ → Σ∗ recursively: FG(ϵ) := α and FG(i1 . . . in−1in) :=
gin(FG(i1 . . . in−1)). The following theorem is the immediate consequence of The-
orem II.12.1 and III.7.1 of [12] and is key to showing our undecidability result.
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Theorem 17 ([12]). Let G = (Σ, g1, . . . , gn, α) and H = (Σ′, h1, . . . , hn, β)
be DT0L-systems with n-homomorphisms. It is unsolvable to decide whether
|FG(w)| ≥ |FH(w)| for all w ∈ [1..n]∗.

Theorem 18. Let L be an indexed language over {á, à}. It is unsolvable to
decide whether L ⊆ Dyck({a}).

Proof (Sketch). Let G and H be DT0L-systems with n-homomorphisms. On the
basis of the construction of [7, Theorem 14.8], we can encode G and H into an in-
dexed grammar I as L(I) = { áiàj áj ài : w ∈ [1..n]∗, i = |FG(w)|, j = |FH(w)| }.

Since i ≥ j ⇐⇒ ái àj áj ài ∈ Dyck({a}), we have the following:

L(I) ⊆ Dyck({a}) ⇐⇒ |FG(w)| ≥ |FH(w)| for all w ∈ [1..n]∗.

This property and Theorem 17 imply the undecidability of Incl(IL,Dyck). ⊓⊔

6 Related Work

The idea of using monoids to solve inclusion problems follows previous work by
the second author [11], which restated the decidability of the inclusion prob-
lems Incl(Cfl,Reg) and Incl(Cfl,Dyck). We have extended the previous
approach for Incl(Cfl,Sdpda) by introducing rgPDAs and using a transi-
tion monoid of rgPDAs to accommodate the technique of Berstel and Boasson.
In the paper [3], Bertoni et al. also used a monoid to solve the inclusion prob-
lem Incl(Cfl,Dyck). Unfortunately, their proof is incorrect because they de-
pended heavily on the incorrect assumption that Dyck monoids are cancellative.
A monoid M is cancellative if xy = xz implies y = z and yx = zx implies y = z
for every x, y, z ∈ M . However, the Dyck monoid over {a} is not cancellative,
i.e., µ(à3á3)µ(à2á2) = a3/a3 = µ(à3á3)µ(à1á1) but µ(à2á2) ̸= µ(à1á1).

Tsukada and Kobayashi showed the decidability of Incl(Cfl,Sdpda) by
designing a type system for DPDAs [14]. They translated an inclusion problem
L(G) ⊆ L(M) for a CFG G and an Sdpda M into the type-theoretical problem
deciding if G is typable under a type system obtained from M . In their type
system, a typed term is of the form w : τ where a type τ is a set of pairs of
configurations τ = {c → c′ : c′ w

∗
c}. Since each type and each type environ-

ment are infinite in general, Tsukada and Kobayashi required extra notations
to represent infinite objects in a finite form; this makes their proof elaborated
overall. Conversely, as mentioned in Section 2, we consider the monoids obtained
from transition rules of rgPDAs and thus the set

∼
∆(w) is finite for any word w.

It is worthy to note that the definition of reading configurations of their paper
differs from Greibach and Friedman [6] and us. A configuration c is a reading
configuration if c is not expandable by ϵ-moves in their definitions; thus, each
configuration with the empty stack ⟨q, ϵ⟩ becomes a reading configuration in [14].
This difference is significant and their main theorems [14, Theorem 8 and 10] do
not hold in their definition; however, it seems that their proofs and result hold
in the original definition of reading configurations considered by Greibach and
Friedman.
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7 Conclusion and Future Work

We have extended the decidability proof of Incl(Cfl,Dyck) given by Bers-
tel and Boasson to Incl(Cfl,Sdpda) by introducing rgPDAs and considering
their monoid. Sdpda strictly includes the class of languages accepted by visibly
pushdown automata with empty stack. Recently, the class of languages accepted
by Floyd automata (operator precedence languages) [9] have received attention
because it includes the class of visibly pushdown languages and enjoys many
closure properties. To the best of our knowledge, the relationship between Sd-
pdas and Floyd automata with empty stack and the decidability of the inclusion
problem between CFGs and them have not been studied to date. We would like
to tackle these problems by extending the arguments presented in this paper.
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