
Reorganizing Queries with Grouping
Rui Okura

University of Tsukuba
Tsukuba, Japan

rui@logic.cs.tsukuba.ac.jp

Yukiyoshi Kameyama
University of Tsukuba

Tsukuba, Japan
kameyama@acm.org

Abstract
Language-integrated query has attracted much attention
from researchers and engineers. It enables one to write a
database query with high-level abstractions, which makes it
possible to compose, iterate, and reuse queries. An important
issue in language-integrated query is the N+1 query problem,
and Cheney et al. proposed a program-transformation ap-
proach to solve it for a core language of Microsoft’s LINQ. In
our previous work, we extended their language to grouping
(GROUP BY in SQL) and aggregate functions, and showed
that any term can be transformed to a single SQL query.
It still has a problem in that the resulting queries may be
unnecessarily large and inefficient.

This paper solves the problem. Our key idea is re-organization
of queries with nested control structures. While our previous
work decomposes grouping into finer primitives before trans-
formation, the new algorithm fuses nested control structures
after transformation, while keeping the absence of nested
data structures. Our algorithm also eliminates correlated sub-
queries as much as possible, to obtain better performance.We
have conducted performance measurements, which shows
that our new algorithm reduces the size of generated queries
and improves the performance for several examples.

CCS Concepts: • Theory of computation → Database
query processing and optimization (theory); • Software
and its engineering→ Functional languages.

Keywords: database, language-integrated query, grouping,
aggregation, normalization, type safety

ACM Reference Format:
Rui Okura and Yukiyoshi Kameyama. 2020. Reorganizing Queries
with Grouping. In Proceedings of the 19th ACM SIGPLAN Interna-
tional Conference on Generative Programming: Concepts and Experi-
ences (GPCE ’20), November 16–17, 2020, Virtual, USA. ACM, New
York, NY, USA, 13 pages. https://doi.org/10.1145/3425898.3426960

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
GPCE ’20, November 16–17, 2020, Virtual, USA
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-8174-1/20/11. . . $15.00
https://doi.org/10.1145/3425898.3426960

1 Introduction
Language-integrated query provides high-level abstractions
to the database queries, and has been attracting much at-
tention from researchers and engineers. Studies based on
typed functional languages provide type safety for language-
integrated query, such Ohori et al’s SML# [9], Grust et al’s
Ferry [5], and Cooper et al’s Links [4]. Among all, one of the
most popular system is Microsoft’s LINQ1, which integrates
SQL with a high-level programming language F# [8].
Research on language-integrated query has been carried

out by a number of studies. Earlier approaches were conser-
vative in the sense that they put syntactic restrictions on its
query sublanguage so that only SQL-equivalent queries can
be written in the language, which leads to poor composabil-
ity and reusability [6]. More ambitious approaches including
Cooper [3] and Cheney et al. [1] allow arbitrary composi-
tion of program fragments, thus allowing component-based
construction of large complicated queries. By composing
queries, we naturally get a query with nested control struc-
tures (such as SELECT in SQL), and nested data structures
(such as record of records, record of list of records), which are
not directly implementable by most dialects of SQL. Cheney
et al. introduced a quotation mechanism for queries, and pro-
gram transformation over quoted terms to eliminate nested
data/control structures. They succeeded in transforming any
query into a single SQL query, but their target SQL does
not contain grouping (GROUP BY) and aggregate functions
(such as MAX and SUM), which are particularly important
in realistic applications.
In our previous work [10] we proposed an algorithm to

cover grouping and aggregate functions under the assump-
tion that the target SQL allows subqueries (nested queries). 2

д2 ◦ f0 ◦ д1

{
︷ ︸︸ ︷
f4 ◦ G2 ◦ f3 ◦ f0 ◦

︷ ︸︸ ︷
f2 ◦ G1 ◦ f1 (decomposition)︸ ︷︷ ︸

{ f4 ◦ G2 ◦ f5 ◦ G1 ◦ f1 (normalization)

Figure 1. Overview of the Previous Work

1https://docs.microsoft.com/en-us/dotnet/csharp/linq/
2Subqueries are those queries whose input, output, or guard conditions
contain another query. PostgreSQL and several dialects of SQL allows
subqueries.

50

https://doi.org/10.1145/3425898.3426960
https://doi.org/10.1145/3425898.3426960

GPCE ’20, November 16–17, 2020, Virtual, USA Rui Okura and Yukiyoshi Kameyama

Fig. 1 illustrates how the algorithm works. The goal of
this algorithm is to eliminate nested data structures from a
query with grouping and aggregate functions.
Terms such as fi and дi denote lambda terms λx .Q (a

query which takes an input table x and computes the value
ofQ), and ◦ denotes function composition. Suppose we have
a query д2 ◦ f0 ◦ д1 where дi are queries with grouping and
f0 is a query without grouping. Functions in our language
may pass nested data structures such as a multi-set (bag) of
multi-sets of records3 as intermediate data, hence the output
of д1 (the input of f0) may be nested data, and similarly for
the output of f0.
In our previous work, we found that, by decomposing a

query with grouping (д1 and д2) into composition of smaller
operations such as a new grouping primitive G and existing
primitives in Cheney et al.’s language, we can apply Cheney
et al.’s normalization rules to eliminated nested data. The
primitive G is the ‘minimum’ grouping operator, namely,
it cannot destruct its input, nor compose output, and only
does grouping by specified keys and applying aggregate
functions to several fields of data. In the above figure, д1 is
decomposed to f2 ◦G1 ◦ f1 where G1 is an instance of G and
fi are instances of existing primitives. Then, we can apply
normalization rules by Cheney et al. to fi ◦ fj . We proved that,
even with the G operator, we can eliminate all nested data
structures, and the resulting term can always be transformed
to a single query in SQL which allows subqueries.
Unfortunately, there is a problem in our previous work,

which we address in this paper. The final term f4 ◦G2 ◦ f5 ◦
G1◦ f1 is converted to a query which has nested subqueries of
depth five (five times nesting of SELECT statements), each of
which corresponds to one of fi and Gi . This is unnecessarily
redundant comparedwith the term before the decomposition,
whose depth is only three.

д2 ◦ f0 ◦ д1
{ f4 ◦ G2 ◦ f3 ◦ f0 ◦ f2 ◦ G1 ◦ f1
{ f4 ◦ G2 ◦ f5 ◦ G1 ◦ f1︸ ︷︷ ︸ ︸ ︷︷ ︸
{ select_g ◦ select_g

Figure 2. Overview of This Work

Fig. 2 gives our solution for the above problem. The idea is
simple; while the decomposed form is needed to apply nor-
malization, it is not needed after all nested data structures
are eliminated. Hence, we re-organize the resulting query by
fusing function composition as much as possible, reducing
the size of the query. For this purpose, we present several fu-
sion rules, which introduce no new nested data. For instance,

3A simple (non-nested) data of table type is a multi-set of records which
consist of basic data such a strings and numbers. Most SQL dialects can
manipulate such data only.

G ◦ fi is fused to a single function and converted to a SE-
LECT clause with grouping (written select_g in the figure).
We also found a rule for eliminating correlated subqueries,
which, if applicable, drastically improves the performance
of generated queries.
We have conducted performance measurements for vari-

ous queries in language-integrated query with nested data
structures and nested control structures. Combined with the
algorithm in our previous work, the new algorithm works
surprisingly well; the performance of SQL queries generated
by our algorithm is the same or better than the performance
of those in our previous work for all examples, and it is
always better than those by Microsoft’s LINQ.

The contribution of this paper is summarized as follows:
• We show that the algorithm in our previous work
sometimes generates large queries for some cases, and
their performance is rather poor if they contain corre-
lated subqueries.
• We introduce new transformation rules which fuse
nested control structures in the generated queries.
• We conduct performance measurements on various
examples which use grouping and aggregation. The
results are in favor of our research compared with
Microsoft’s LINQ and our previous work.

The rest of this paper is organized as follows. Section 2 in-
formally explains the problem in our previous work and the
overview of the results in this paper using examples. Section
3 gives the source language, its type system, and program
transformations in the previous work. Section 4 presents
our re-organization algorithm for queries with grouping and
aggregate functions, and Section 5 gives the final transfor-
mation to SQL. Section 6 explains several involved exam-
ples. The performance measurements for our language is
explained in Section 7. Section 8 gives conclusion.

2 Examples
This section informally explains the outline of our work us-
ing several examples. We use the database consisting of two
tables in Fig. 3. The products table has the fields4 for product

products
pid name cat price
1 shirt 110 100
2 T-shirt 110 200
3 pants 111 500
4 suit 210 1000

orders
date pid qty

2020-01-01 1 3
2020-01-01 1 10
2020-01-01 2 2
2020-01-02 1 5
2020-01-02 4 15
2020-01-02 4 20

Figure 3. Sample database tables

4We call each element of a record a field, which means a column for a
database table.

51

ReorganizingQueries with Grouping GPCE ’20, November 16–17, 2020, Virtual, USA

ID (pid), name (name), category (cat), and price (price), and
the orders table has the fields for the date of order (date),
product ID (pid), and quantity (qty).

2.1 First Example
The following SQL query computes, for each order ID, the
sum of quantities ordered on 2020-01-01.

SELECT o.pid AS pid ,

SUM(o.qty) AS qty_sum

FROM orders AS o

WHERE o.date = "2020 -01 -01"

GROUP BY o.pid

Here, the SELECT statement is used with GROUP BY, and
classifies the given data by the value of the key o.pid. SUM is
an aggregate function which computes the sum of all data in
each group. A query with grouping and aggregate functions
is frequently used in practical applications of database, yet,
it has been an open problem [2] to cover GROUP BY in
language-integrated query before our previous study.
In our previous work, we proposed a solution for this

problem when the target SQL allows subqueries. Our idea
is decomposition of queries, and the above query can be ex-
pressed in the following decomposed form:

Q(simple) = G(pid,α)(for(o ← table(“orders”))
where (o.date = “2020-01-01”)
yield o)

where α = {(qty, SUM, qty_sum)}

Here, for(x ← T) where B yieldM corresponds to SELECT

M FROM T AS x WHERE B in SQL. The G-operator is our new
operator for grouping and aggregate functions. It takes two
parameters (pid and α in the above example) and an argu-
ment (the term starting from for). Its first parameter is the
field(s) to be used as grouping key(s), and the second one
specifies (1) the field to which an aggregate function is ap-
plied, (2) an aggregate function, and (3) the field name which
stores the result of aggregation. The term G(pid,α)(N) classi-
fies the input table N by the value of pid, computes the sum
of the field qty in each group, and returns a bag (multi-set) of
the records consisting of the value of pid and the sum (in the
field qty_sum), hence,Q(simple) does the same computation
as the above SQL query.
The G-operator is a rather simplified operator than the

grouping feature in SQL. For instance, we cannot compute
SUM(qty * qty), nor SUM(qty)/2 by G alone. However, we
can express any SELECT statement with GROUP BY using
our G-operator and existing primitives; see Section 3.
Since the query Q(simple) uses no nested data as inter-

mediate data, we can immediately convert it a SQL query as
follows.

SELECT x.pid AS pid ,

SUM(x.qty) AS qty_sum

FROM (SELECT o.*

FROM orders AS o

WHERE o.date = "2020 -01 -01") AS x

GROUP BY x.pid

We see a problem in our previous work here. Initially we
had a simple query without nesting, but after transformation
we got a larger SQL querywith nested SELECT statements. In
general, the query generated by our previous transformation
can be up to three times as large as the query before trans-
formation, which is unacceptable. Even worse, the large size
of queries sometimes causes a serious performance problem
of generated queries. This paper fixes these problems.

2.2 Second Example
The second example is an instance of a nested queryд2◦ f1◦д1
illustrated in the previous section.

Let д1 be the following function.

д1(t1, t2) = for(x ← G({date,pid},α1)(t1))

yield {pid = x .pid,
sales = for(p ← t2)

where (x .pid = p.pid)
yield {category = p.cat,

sale = p.price ∗ x .qty_sum}}
where α1 = {(qty, SUM, qty_sum)}

We can obtain a concrete query by applying д1 to two tables,
for instance, д1(table(”orders”), table(”products”)). д1 first
executes G({date,pid},α1)(t1) which computes a bag of the sum
of quantity in each group classified by the value of the date
field and the pid field in the table t1. Then it computes a
nested data consisting of a bag of records with the fields pid
and sales, and the sales field is a bag of records.
The next function f extracts the sales field of an input

t , which is assumed to be a bag of records, and does some
computation for each record.

f (t) = for(y ← t)

for(z ← y.sales)
yield {category = z.category,

sale = z.sale ∗ 0.8}

The third function in this series is д2, which computes the
sum of sales grouped by category, and extracts summation
of sales (sales_sum) and multiplies it by 100.

д2(t) = for(v ← G(category,α2)(t))

yield {result = v .sale_sum ∗ 100}
where α2 = {(sale, SUM, sale_sum)}

We can compose the three functions and apply the result
to concrete tables to obtain a concrete query. By executing
(д2 ◦ f ◦ д1)(table(”orders”), table(”products”)), we get:

[{result = 176000}; {result = 2800000}].

52

GPCE ’20, November 16–17, 2020, Virtual, USA Rui Okura and Yukiyoshi Kameyama

Although the input and the output of this query are non-
nested data (a bag of records which consists of fields with
basic values), nested data structures (a bag of records of bags)
are passed around between adjacent functions, hence the
above query is not directly expressible in SQL.
The transformation in our previous work can eliminate

the nested data structures in this query, and generate the
following SQL query (which we call Q0).

SELECT v.sale_sum * 100 AS result

FROM (SELECT z.category AS category ,

SUM(z.sale) AS sale_sum

FROM (SELECT p.cat AS category ,

p.price * x.qty_sum *

0.8 AS sale

FROM (SELECT y.date AS date ,

y.pid AS pid ,

SUM(y.qty) AS qty_sum

FROM (SELECT o.*

FROM orders AS o)

AS y

GROUP BY y.date ,

y.pid) AS x,

products AS p

WHERE x.pid = p.pid) AS z

GROUP BY z.category) AS v

The result is a single SQL, and can be executed in SQL proces-
sors which allow subqueries. However, it contains four-times
nested subqueries, which is unnecessarily large. In general,
the decomposition may triple the depth of subqueries of
queries, which is not acceptable. It also affects the perfor-
mance of generated queries. It is true that a SQL optimizer
sometimes improves the performance of nested queries, but
it is not always the case. We found several examples whose
performance is rather poor compared with a hand-written,
equivalent SQL query.

The present paper solves this problem by transforming the
generated queries further. The above example is transformed
by our new transformation to the following one.

SELECT SUM(z.sale) * 100 AS result

FROM (SELECT p.cat AS category ,

p.price * SUM(o.qty) * 0.8

AS sale

FROM orders AS o, products AS p

WHERE o.pid = p.pid

GROUP BY o.date , o.pid , p.pid ,

p.name , p.cat ,

p.price) AS z

GROUP BY z.category

The depth of subqueries in this query is smaller than that
of the query before transformation. By executing it, we get
the same result as the latter.

In the next section we formally introduce the language
and our new transformation rules.

3 The Language with Grouping
This section presents the language Quelg, its type system,
and program transformation rules in our previous work [10].
The new transformation in this paper will be given in the
next section.

3.1 Language
We define the language Quelg for language-integrated query.
It is based on Cooper’s source language [3] without effects
(which is nearly the same as Nested Relational Calculus
[13]), and Cheney et al.’s T-LINQ [1] restricted to the code-
level terms. We added the grouping operator and aggregate
functions to their language.

Fig. 4 defines the syntax of terms in Quelg.

Terms M,N ::= x | c | λx . M | M N | ⊕(M)
| M ⊎ N | for(x ← M) N
| whereM N | yieldM
| [] | table(t)
| {l = M} | M .l | G(κ,α)(M)

Spec α ::= {(l ,⊚, l ′)}

Figure 4. Syntax of Terms in Quelg

Terms are either a variable (x), constant (c), λ-abstraction,
function application, primitive function call (where ⊕ de-
notes a primitive function), multiset union (M ⊎ N), com-
prehension (for(x ← M) N), conditional (whereM N), sin-
gleton (yieldM), empty bag ([]), table expression (table(t)),
record construction ({l = M}), selection (M .l), or grouping
(G(κ,α)(L)).

An overlined expression denotes a sequence, for instance,
l = M is an abbreviation for l1 = M1, · · · , ln = Mn where
the length n is implicit. The metavariable t denotes a table
name (given by a string), l is a field name in the record, and
κ is a finite set of field names used as grouping keys. The
specification α is a finite set of triples consisting of a field
name (l) for the target of aggregation, an aggregate function
(⊚), and a field name (l ′) for the result of aggregation.

Let us briefly explain the semantics of important con-
structs. First, most expressions compute a bag as its value,
where a bag is a multiset (an unordered list), and we write
it using list notation such as [a,a,b, c]. A table is a bag of
records such as {aдe = 25, name = “Tom”}. Whereas in the
standard database, each field of a record in a table should
hold a basic value such as integers or strings, Quelg allows
an arbitrarily data as the value of a field, hence nested data
structures such as a bag of records of records are legitimate
(typable) in Quelg.

53

ReorganizingQueries with Grouping GPCE ’20, November 16–17, 2020, Virtual, USA

The term for(x ← M) N is bag-comprehension; for each
element of the value of M (which should be a bag), it com-
putes the term N which should return a bag, and returns the
multiset-union of the bags. The termwhere L M returns the
value of M if L returns true, and returns the empty bag []
otherwise. The term yield M returns a singleton multiset
consisting of the value ofM .

The term G(κ,α)(M) expresses the minimum functionality
of grouping and aggregation. It gets as input the value ofM
(which should be a bag), and classifies the records based on
the values of grouping keys specified by κ, aggregates the
values in the same group, and finally returns a bag of records
consisting of grouping keys and aggregated values.5 For
instance, by computing the query G(cat,α)(table(“products”))
where α = {(price,MAX,max_price)} for the products table
in Section 2, we get [{cat = 210,max_price = 1000}] as its
result. We use typical aggregate functions such as SUM, AVG,
MAX, MIN and COUNT in the examples, but as long as our
transformation is concerned, any aggregate functions are
allowed if its input and output are basic types. See the typing
rule for grouping.

We have the standard notion of variable binding; the vari-
able x is bound in the subtermM of λx .M and for(x ← L)M .
We identify α-equivalent terms, and substitution used in pro-
gram transformation should be the capture-avoiding one.

Although our grouping operator has limited functionality,
we can express the SELECT statement with the GROUP BY
clause in SQL by combining our primitives with others. For
instance, the following SQL query

SELECT p.cat as cat ,

SUM(p.price * o.qty) as sales

FROM products AS p, orders AS o

WHERE p.pid = o.pid

GROUP BY p.cat

HAVING SUM(p.price * o.qty) > 2000

can be expressed as a term in Quelg as follows:

for(r ← G(cat,α)(for(p ← table(”products”))
for(o ← table(”orders”))
where (p.pid = o.pid)
yield {cat = p.cat, sales = p.price ∗ o.qty}))

where (r .s > 2000)
yield {cat = r .cat, sales = r .s}
where α = {(sales, SUM, s)}

Note that our operator G does grouping and aggregation
only, and all other works are done by existing primitives.
We can thus decompose a primitive for grouping into the

5For simplicity, we assume that all grouping keys are contained in the
results. See the typing rule.

combination of G and existing primitives. By this decomposi-
tion, the term will have more opportunity to be transformed,
which is the key to our previous work.

3.2 Type System
The language Quelg is a statically typed language, and all
transformation rules must preserve typing of terms. Since it
has been argued in existing works in depth, we give a brief
overview of the type system.

Fig. 5 defines types and typing environments.

Base types O ::= Int | Bool | String
Types A,B ::= O | A −→ B | Bag A | {l : A}
Env Γ ::= · | Γ,x : A

Figure 5. Types of Quelg

A type is a basic type, a function type, a bag type Bag A
for multisets, or a record type {l : A}, which is abbreviation
of {l1 : A1, · · · , lk : Ak }. Throughout this paper, we assume
that all field names l1, · · · , lk are mutually distinct.
For basic types Oi , the type Bag {l : O} is called a table

type. Standard SQL can manipulate the values of table type
only, and other nested data such as a bag of bags of records
must be translated away before generating an executable
SQL. A typing context Γ is standard where · denotes the
empty environment.

Fig. 6 shows typing rules for important constructs.

FOR
Γ ⊢ M : Bag A Γ,x : A ⊢ N : Bag B

Γ ⊢ for(x ← M) N : Bag B

WHERE SINGLETON
Γ ⊢ L : Bool Γ ⊢ M : Bag A
Γ ⊢ where L M : Bag A

Γ ⊢ M : A
Γ ⊢ yieldM : Bag A

GROUPING

Γ ⊢ L : Bag {κ : O ′′,m : O} l ⊆ m
α = {(l ,⊚, l ′)} ⊚i : O j −→ O ′j (for all li andmj s.t. li =mj)

Γ ⊢ G(κ,α)(L) : Bag {κ : O ′′, l ′ : O ′}

Figure 6. Type System of Quelg

The last typing rule is the one for the grouping term
G(κ,α)(L). The first condition in its hypothesis says L must
have a table type. l ⊆ m means that the former set is a sub-
set of the latter, in other words, for any li , there exists an
mj such that li = mj . The last condition in the hypothesis
says that the i-th aggregate function ⊚i must have the type
O j −→ O ′j . Then G(κ,α)(L) returns a bag of records which has

54

GPCE ’20, November 16–17, 2020, Virtual, USA Rui Okura and Yukiyoshi Kameyama

the values of all the grouping keys, and the results of apply-
ing aggregate functions to the specified field in α with the
new field name l ′.

Note that our operator G does grouping and aggregation
only, and all other works are done by existing primitives in
Cheney et al.’s language. We can thus decompose SQL’s big
primitive for grouping into the combination ofG and existing
primitives. Since for and other existing primitives can be
transformed by Cheney et al.’s transformation rules, the term
in the above form has more opportunity to be transformed,
which is the key to our previous work.

3.3 Normalization
The query avalanche problem, or the N +1-query problem in
language-integrated query means that, to execute a nested
for-term using the SQL processor which does not allow sub-
queries, one would need to generate many SQL queries and
interact with SQL processor many times, which degrades
the performance. Cooper solved the problem by program
transformation [3], and Cheney et al. formalized his idea in
a program-generation framework; they introduced a typed
two-level language, and proved that any closed terms of
table types can be transformed to normal form which is di-
rectly translated to SQL. Our previous work extended it to
a language with grouping and aggregate functions. Surpris-
ingly, no new transformation rules are needed other than
decomposition of a big grouping primitive. By applying their
transformation to our language, we have solved the N + 1-
query problem for our language.

Fig. 7 shows the normalization rules by Cheney et al.
The rules are classified into two stages, where Stage 1

rules should be applied before Stage 2 rules. 6 The former
consists of structural reductions for various types, while the
latter consists of ad hoc simplification rules. More detailed
explanation can be found in the literature [1].

It is proved that these rules are normalizing [10], and the
syntax of normal form is given in Fig. 8.
U is the top-level category, namely, a closed term of table

type in Quelg is normalized to U . Compared with the nor-
mal form in Cheney et al.’s work, our normal form allows
G(κ,α)(U) to appear in H , hence a term with nested control
structures such as for(x ← G(κ,α)(U)) F is in normal form.
Nevertheless, we can prove that, no nested data types (other
than the table types) appear in the types of any subterms of
normal form, hence we can convert normal form in Fig. 8 to
a SQL query if subqueries are allowed. See Okura et al. [10]
for details. The query Q0 in Section 2 has been obtained in
this way.

6The order of applying rules in each stage does not matter, as the rules are
(semantically) confluent and strongly normalizing.

(Stage 1)
(λx .N)M ⇝ N [x := M]

{l = M}.li ⇝ Mi
for(x ← yieldM) N ⇝ N [x := M]

for(x ← for(y ← L)M) N ⇝
for(y ← L) (for(x ← M) N) (if y < FV (N))
for(x ← where L M) N ⇝

where L (for(x ← M) N)
for(x ← []) N ⇝ []

for(x ← M1 ⊎M2) N ⇝
(for(x ← M1) N) ⊎ (for(x ← M2) N)

where trueM ⇝ M
where falseM ⇝ []

(Stage 2)
for(x ← M) (N1 ⊎ N2) ↪→
(for(x ← M) N1) ⊎ (for(x ← M) N2)

for(x ← M) [] ↪→ []

where L (M ⊎ N) ↪→
(where L M) ⊎ (where L N)

where L (whereM N) ↪→
where (L ∧M) N

where L (for(x ← M) N) ↪→
for(x ← M) where L N

Figure 7. Normalization rules

Query U ::= U1 ⊎U2 | [] | F
Comprehension F ::= for(x ← H) F | Z

H ::= table(t) | G(κ,α)(U)
Body Z ::= where B Z | yield R | H

Record R ::= {l = B} | x

PrimitiveOp. B ::= ⊕(B) | x .l | c

α ::= {(l ,⊚, l ′)}

Key κ ::= l

Figure 8. Normal form of Quelg

4 Reorganizing Queries
This section introduces novel transformations to optimize
normal form in the previous section, to reduce the size of
queries and get better performance.

As we explained in Section 2, SQL queries obtained by our
previous work is often unnecessarily large, and sometimes
very inefficient. This is contrasting with the normal form
by Cheney et al.’s work which always generates compact
and efficient SQL queries. The difficulty in our language
lies in the fact that the grouping operator itself allows no
transformations at all, therefore our normal form ought to
contain arbitrarily many nested control structures. Even

55

ReorganizingQueries with Grouping GPCE ’20, November 16–17, 2020, Virtual, USA

worse, no further transformation seems to be applicable to
normal form within Quelg.

However, the normal forms are not arbitrarily complicated.
We only have to consider the combination of д ◦ f or f ◦ д,
where f is a for-term and д is an instance of the grouping
operator. Although fusing them within Quelg is not possible,
fusing them in SQL is possible, as SQL’s SELECT statements
with GROUP BY is very expressive. Put differently, in our
previous work, we decomposed SQL’s grouping operation
before program transformation, and in this work, we do its in-
verse; we reorganize (re-compose) the function composition
such as д ◦ f into a single control structure, to obtain smaller
queries in SQL. We also consider a fusion transformation for
other patterns to further optimize queries.

4.1 Intermediate Representation
We introduce a language for intermediate representation (IR)
which is useful to state our optimization for reorganization.

Query Q ::= select(I, O, C)
| gselect(I, O, C, K, C)
| unionall(Q, Q)

Table T ::= table(t) | sub(Q)
Primitive B ::= c | x .l | ⊕(B)

Input I ::= [(x ← T)]

Output O ::= {l = B}
Condition C ::= B | C ∧C

Key K ::= [B]

Figure 9. Syntax of Intermediate Representation

Fig. 9 gives the syntax of IR, which is a compact represen-
tation of SQL with small difference. The term select(I, O, C)
corresponds to a SELECT statement without grouping:

SELECT O FROM I WHERE C

Similarly, the term gselect(I, O, C1, K, C2) corresponds to
one with grouping as follows:

SELECT O FROM I WHERE C1
GROUP BY K HAVING C2

I and O of these terms are called its input and output,
respectively. The term unionall corresponds to UNION ALL
in SQL. table(t) represents a table, and sub(Q) is a subquery.

The input I of a query is an ordered list of variable-binding
in the form (xi ← Ti) which will be translated to Ti AS xi
in SQL. For brevity, we use the bag-notation [e1; · · · , en]
for a list if it is used as an input term in IR. Variables in I
are bound by the select and gselect terms, but some care is
needed to understand their scopes since the order of the ele-
ments in I matters. To explain it using the term select([(x1 ←
T1); (x2 ← T2)], O, C), the variable x1 is bound inT2,O andC,
while x2 is bound in O and C. Similarly to Quelg, we identify

M[[U1 ⊎ U2]] = unionall(M[[U1]], M[[U2]])

M[[[]]] = select([], [] , false)
M[[G(κ,α)(U)]] =

gselect([(y ← table(t))], {l ′ = ⊚(y.l)},
true, [y.κ], true) if U = table(t)

gselect([(y ← sub(M[[U]]))], {l ′ = ⊚(y.l)},
true, [y.κ], true) otherwise

(where α = {(l ,⊚, l ′)})
M[[for(x ← H) F]] =

select((x ←Maux [[H]]) :: I, O, C)
if M[[F]] = select(I, O, C)

gselect((x ←Maux [[H]]) :: I, O, C1, [x .l]@ K, C2)

if M[[F]] = gselect(I, O, C1, K, C2)

M[[where B Z]] =
select(I, O, C ∧M[[B]])

if M[[Z]] = select(I, O, C)
gselect(I, O, C1 ∧M[[B]], K, C2)

if M[[Z]] = gselect(I, O, C1, K, C2)

M[[table(t)]] =

select([(y ← table(t))], {l = y.l}, true)
M[[yield R]] = select([], M[[R]], true)

M[[{l = B}]] = {l =M[[B]]}

M[[⊕(B)]] = ⊕(M[[B]])

M[[e]] = e for e = x , c, x .l

Maux [[H]] ={
table(t) if H = table(t)
sub(M[[G(κ,α)(U)]]) if H = G(κ,α)(U)

Figure 10. Translation from Quelg to IR

two α-equivalent terms, and bound variables are renamed if
name clash occurs during program transformation.

Precise correspondence between IR and SQL will be given
later as a translation from the former to the latter.

Fig. 10 defines the translation from normal form in Fig. 8
to IR. Here t1 :: t2 is the cons operation for lists, and s1 @ s2
is concatenation for sequences. The variable y used in the
results of the translation should be a fresh variable.

Let us explain the translation, which converts any normal
form of bag type into a select-term or a gselect-term. This
allows us to treat IR terms uniformly.
Our intention of the translation is the ‘output-oriented’

resolution of nested control structures. For instance, for(x ←
H) for(x ′ ← H ′) Z is in normal form, but SQL’s SELECT
statement allows multiple tables as its input (implicit inner
join), and so is our IR. We express it as a single select-term
which has (x ← H) and (x ′ ← H ′) as its input. The above

56

GPCE ’20, November 16–17, 2020, Virtual, USA Rui Okura and Yukiyoshi Kameyama

translation collects such H and H ′ by recursively traversing
the term (the first clause for for).
The term for(x ← H) G(κ,α)(U) is similarly translated

(the second clause for for), but it needs one more twist. This
term performs grouping for each x , namely, if H has N rows,
grouping takes place N times. To simulate the behavior by a
single grouping operation, we add all the fields of x to the
grouping keys ([x .l] @ K) so that the grouping operation
can distinguish records from different values of x . We can
optimize the translation; if the table for H has the field for
primary key, which means that each record in the table can
be distinguished by the value of the primary key, then we
only have to add the primary key to the grouping keys.

In this way, all (output-oriented) nesting of for is resolved
and we get a single select-term or gselect-term.
As an example, the term Q(simple) in Section 2 is trans-

lated to the following IR term:

gselect([(x ← sub(select([(o ← table(“orders”))],
o.∗, o.date = “2020-01-01”)))],

{pid = x .pid, qty_sum = SUM(x .qty)},
true, [x .pid], true)

4.2 Reducing Query Size
We first transform the pattern д ◦ f where д is an operation
with grouping and f is an operation without grouping. This
combination is translated to the following IR term:

gselect([(y ← sub(select(I′, O′, C′)))], O, C1, K, C2)

→ gselect(I′,O [y := O′],C1 [y := O′] ∧ C′,
K [y := O′],C2 [y := O′])

The rule can be explained as follows. The query in the left-
hand side of this rule first executes the subquery sub(· · ·)
to get a table as its value, then the outer query performs
grouping on the table. We can express the above combination
by a single statement in SQL. Note that the variable y in
the term before the transformation is bound in O, C1, K ,
and C2, hence we need to substitute O ′ for y in the result
of transformation. Also the conditions C′ and C1 (which
corresponds to the pre-condition for grouping) are merged
by conjunction.
Substitution for IR terms is in general dangerous, as the

correspondence between the grouping operation and aggre-
gate functions may be broken when a term that contains
aggregate functions is substituted for a variable which is in
the scope of a different grouping operator.7 The above trans-
formation rule does not suffer from this problem since the
term O′ is a simple record and does not contain aggregate
functions. We need to consider this problem seriously, if our
language allows subqueries to appear in expressions such as
the term exists(M), which is left for future work.

7This is one of the reasons why introduced a G-operator which takes
aggregate functions as its parameter in Quelg. Since they are coupled by
our operator, we do not have to worry about the problem.

It is easy to show that the above transformation preserve
typing, and thus we do not lose the important property of
the absence of nested data structures.
The transformation reduces the depth of nested control

structures in queries, yet, it is limited to the case when the
input list of gselect is a singleton, and does not necessarily
improve the size and performance of queries, which is highly
dependent on the terms being transformed. See Section 7 for
our experiments on these issues.
The above rule can be generalized in several ways. For

instance, we can generalize it to the rule where the input list
has multiple elements such that all the elements but the last
one are the pairs of a variable and a table expressions. For
this case, we only have to enumerate the table expressions
after the FROM clause in SQL to obtain the equivalent query.
More general cases are harder, which is left for future work.

The next rule transforms the pattern f ◦ д as follows:

select([(y ← sub(gselect(I, O′, C1, K, C2)))], O, C)
→ gselect(I, O [y := O′], C1, K, C [y := O′] ∧ C2)

This rule is very similar to the previous case. All the re-
marks after the first transformation applies to this rule, too.

As an example, the IR term for Q(simple) in Section 4.1 is
transformed to the following term:

gselect([(o ← table(“orders”))],
{pid = o.pid, qty_sum = SUM(o.qty)},
o.date = “2020-01-01”,
[o.pid], true)

As expected, the size of the query has been reduced.

4.3 Eliminating Correlated Subquery
We consider the optimization for eliminating correlated sub-
queries. In our language, correlated subqueries are nested sub-
queries in which a variable bound by one subquery is derefer-
enced in the other subquery. It is well known that correlated
subqueries often show rather poor performance. Although
an experienced SQL writer would not write correlated sub-
queries unless it is absolutely necessary, our transformation-
based approach may sometimes introduce correlated sub-
queries. Hence, we study this issue within our framework,
and show that it is possible to eliminate correlated subqueries
to some extent, which leads to a great improvement on the
performance.
A query for(x ← table(t)) for(y ← G(κ,α)(M)) N in

Quelg is transformed to the following IR term:

select([(x ← table(t));
(y ← sub(gselect(I′, O′, C1, K′, C2)))]), O, C)

It is a correlated subquery if the variable x is used in the
gselect-term. To optimize it while preserving the semantics,
we need to combine the input of select into one subquery.
This can be achieved by adding all the records in the table t
to the output (O′) and the grouping key (K′) of the subquery.

57

ReorganizingQueries with Grouping GPCE ’20, November 16–17, 2020, Virtual, USA

The translation can be expressed as follows:

select([(x ← table(t));
(y ← sub(gselect(I′, O′, C1, K′, C2)))], O, C)

→ select([(y ← sub(gselect((x ← table(t)) :: I′,
{l ′ = x .l} @ O′, C1, [x .l]@ K′, C2)))],

O [x .l := y.l ′], C [x .l := y.l ′])

This rule transforms a select-term which has two inputs:
the first one is a table term, and the second one is a grouping
term. The whole term is a correlated subquery if x occurs
in the rest of the query. The operator @ for records denotes
concatenation. We use filed names l ′ in several places but
for the moment let us ignore the difference between l ′ and l .

The rule adds the table (table(t)) to the input of the group-
ing term. The occurrences of x in O and C are substituted
for y, thus dependency on x is eliminated and the result-
ing query is no more a correlated subquery. We also add
all the fields in x to the key list of grouping to preserve the
semantics of the query. Put differently, the query after the
transformation takes the tagged (disjoint) union for each x ,
and the grouping operation is applied to the resulting bag,
rather than iterating grouping operations for each x .
One subtle issue remains in this transformation, namely,

the role of renaming field names from l to l ′. Its role is to
avoid the possible collision of field names between x and y.
Namely, the field x .l is added to y, but if y also has the field
y.l , then we copy the value of x .l to y.l ′. For simplicity, we
rename all the fields in x regardless they have collision with
y. By this trick, we can successfully translate a correlated
subquery to a non-correlated one while keeping semantics.

4.4 Summary of Our Transformation
Fig. 11 summarizes the optimization rules other than the
translation to IR.

Actually the third optimization for eliminating correlated
queries is generalized to the case where the first input is not
necessarily a table expression, but an arbitrary expression
(select or gselect).

We take the left-most strategy when we apply these opti-
mization rules to IR terms. As we will see later, by composing
the translations in Fig.10 with these optimizations we get
smaller, and sometimes better performant, queries than those
obtained by our previous work.

5 Translation to SQL
As the final step of our translations, we translate IR to SQL.
For a technical reason explained below, we assume that the
back-end SQL is PostgreSQL (or other dialects which have
an equivalent feature).
Our IR is designed to be a compact macro language for

SQL, so the translation between them should be identity
module the names of constructors: for an IR term select

(Stage 1)
O1[[gselect(I, O, C1, K, C2)]] =

gselect(I′,O [y := O′],
C1 [y := O′] ∧ C′,K [y := O′],C2 [y := O′])

(where I = [(y ← sub(select(I′, O′, C′)))])
(Stage 2)

O2[[select(I, O, C)]] =

gselect(I′, O [y := O′], C1, K′, C [y := O′] ∧ C2)

(where I = [(y ← sub(gselect(I′, O′, C1, K′, C2)))])

(Stage 3)
O3[[select(I, O, C)]] =

O2[[select(I′′, O [x .l := y.l ′], C [x .l := y.l ′])]]©­­­­­«
where query = table(t) or sub(select or gselect)
where I = [(x ← query);

(y ← sub(gselect(I′, O′, C1, K′, C2)))]

→ I′′ = [(y ← sub(gselect((x ← query) :: I′,
{l ′ = x .l} @ O′,C1, [x .l]@ K′,C2)))]

ª®®®®®¬
Figure 11. Optimizations

(I, O, C), we map I to the FROM clause, O to SELECT, and C
to WHERE.

However the naive translation has a subtle problem as fol-
lows. Aswe explained in Section 4.1, if I = [(x1 ← T1); (x2 ←
T2)], then T2 may dereference x1, namely, the input tables
may have dependency. As the input tables (the expressions
after FROM) in SQL does not allow dependency, the naive
translation fails. In fact, the following query in SQL raises
an error when executed.

SELECT *

FROM products AS p,

(SELECT * FROM orders AS o

WHERE p.pid = o.pid) AS x

(* ERROR: invalid reference to FROM -clause

entry for table "p" *)

We solve this problem using the LATERAL clause provided
by recent PostgreSQL,8 which makes it possible to allow
dependency among input tables. With the LATERAL clause,
the above query is written as follows.

SELECT *

FROM products AS p,

LATERAL (SELECT *

FROM orders AS o

WHERE p.pid = o.pid) AS x

Executing this query has no problem.
Fig. 12 defines the translation from IR to SQL (PostgreSQL).

We assume that bound variables in IR terms are mutually

8The feature has been supported by PostgreSQL since 9.3, and by MySQL
since 8.0.14.

58

GPCE ’20, November 16–17, 2020, Virtual, USA Rui Okura and Yukiyoshi Kameyama

unionall(S[[U1]], S[[U2]]) =

S[[U1]] UNION ALL S[[U2]]

S[[select(I, O, C)]] =

SELECT S[[O]] FROM S[[I]]WHERE S[[C]]
S[[gselect(I, O, C1, K, C2)]] =

SELECT S[[O]] FROM S[[I]]
WHERE S[[C1]]

GROUP BY S[[K]] HAVING S[[C2]]

S[[table(t)]] = t

S[[sub(U)]] = LATERAL (S[[U]])
S[[c]] = c

S[[x .l]] = x .l

S[[⊕(B)]] = ⊕sql (S[[B]])

S[[[(x ← T)]]] = S[[T]] AS x

S[[{l = B}]] = S[[B]] AS l
S[[x]] = x .∗

S[[C ∧C ′]] = S[[C]] AND S[[C ′]]

S[[[B]]] = S[[B]]

Figure 12. Translation from IR to SQL

distinct, and the same variable names can be used in the
corresponding SQL.
The above translation works for all the terms in our IR,

which completes the task for transforming a language-integrated
query to a single executable SQL query.

6 Involved Examples
In this section, we apply our transformations to several ex-
amples with grouping and aggregate functions. They use the
tables in Fig.3 in Section 2. We assume that examples use
our grouping operator from the first place, hence we do not
need to decompose them.

6.1 Query with Nested Data Structure
The first queryQ(getSales) uses a nested data structure and
grouping, shown below.

Q(getSales) =

G(pid,α)(for(x ← for(p ← table(“products”))
yield {order = for(o ← table(“orders”))

where (p.pid = o.pid)
yield {pid = o.pid,
sales = p.price ∗ o.qty}})

for(y ← x .order)
yield y)

where α = {(sales,AVG, sales_avg)}

Q(getSales) fetches the record with the same pid from the
products table and orders table and calculates the sales. It
performs grouping based on pid as the key, and calculates the
average of sales. It uses a nested data structure. The query is
transformed to the following term.

Q(getSales) = G(pid,α)(for(p ← table(“products”))
for(o ← table(“orders”))
where (p.pid = o.pid)
yield {pid = o.pid,

sales = p.price ∗ o.qty})
where α = {(sales,AVG, sales_avg)}

We can optimize Q(getSales) by using only the Stage 1
optimization, and get the following IR term.

gselect([(p ← table(“products”)); (o ← table(“orders”))],
{pid = o.pid, sales_avg = AVG(p.price ∗ o.qty)},
p.pid = o.pid, true, [o.pid], true)

By translating this IR term, we get the following compact
SQL query:

SELECT o.pid AS pid ,

AVG(p.price * o.qty) AS sales_avg

FROM products AS p, orders AS o

WHERE p.pid = o.pid

GROUP BY o.pid

HAVING TRUE

6.2 Query with Correlated Subquery
The second query Q(getQty) uses a correlated subquery,
shown below:

Q(getQty) =

for(p ← table(“products”))
for(y ← G({name,date},α)(for(o ← table(“orders”))

where (p.pid = o.pid)
yield {name = p.name,

date = o.date,
qty = o.qty}))

yield {name = p.name, date = y.date,
qty_sum = y.qty_sum}

where α = {(qty, SUM, qty_sum)}

The query Q(getQty) retrieves records with the same pid
from the products and orders tables, then performs grouping
by the name and dates fields as keys. It calculates the total
number of the products for each date. It is already in normal
form, and we translate it using all optimizations from Stages
1 through 3. The IR term obtained by applying the Stage 1

59

ReorganizingQueries with Grouping GPCE ’20, November 16–17, 2020, Virtual, USA

optimization only is shown below:

select([(p ← table(“products”));
(y ← sub(gselect([(o ← table(“orders”))],

{name = p.name, date = o.date,
qty_sum = SUM(o.qty)},

p.pid = o.pid,
[p.name;o.date], true)))],

{name = p.name, date = y.date,
qty_sum = y.qty_sum},
true)

The IR term obtained by applying the Stage 2 and 3 opti-
mizations for this term is shown as follows:
gselect([(p ← table(“products”)); (o ← table(“orders”))],

{name = p.name, date = o.date,
qty_sum = SUM(o.qty)},

p.pid = o.pid,
[p.pid;p.name;p.cat;p.price;o.date], true)

Finally, we translate it to SQL, obtaining the following
query.

SELECT p.name AS name , o.date AS date ,

SUM(o.qty) AS qty_sum

FROM products AS p, orders AS o

WHERE p.pid = o.pid

GROUP BY p.pid , p.name , p.cat , p.price ,

o.date

HAVING TRUE

Note that we have obtained a single query without sub-
queries. If we had not used the optimizations in this paper,
we would have got a SQL query with a correlated subquery,
which would be rather inefficient.

7 Performance
We have implemented our transformations in OCaml based
on Suzuki et al.’s typed tagless-final implementation for their
language-integrated query [12], and compared the perfor-
mance by measuring the execution time of SQL queries gen-
erated by our previous work and by the present paper. We
also measured the execution time of SQL queries generated
by Microsoft’s LINQ in F#. The computing environment is
Mac OS 10.13.2 with Intel Core i5-7360 CPU with 8GB RAM,
and we use OCaml 4.07.1, F# 4.7 using .NET Core 3.1, and
PostgreSQL 11.5. All queries used in the experiment are avail-
able online.9
We have used the tables in Fig.3 where the number of

rows is increased to 5000 (products) and 10000 (orders), and
also used several other tables. We have measured the per-
formance for eleven queries with grouping, including the
one in Section 6. The queries used in this experiments are
classified into two groups.

9http://logic.cs.tsukuba.ac.jp/~rui/quelg_opt/example.html

Table 1. Results of Performance Measurement

Query LINQ Quelg Quelg-opt Trans
Q(simple) 3.18 3.57 3.18 0.03
Q(д2 ◦ f ◦ д1) Av 6.26 6.99 0.05
Q(getSales) Av 4.38 4.35 0.22
Q(getCount) 2.75 3.60 2.75 0.03
Q(abstraction) 2.14 2.51 2.14 0.06
Q(predicate) NA 1.42 0.99 0.03
Q(getScore) NA 29.56 25.61 0.36
Q(getQty) NA 1855.55 15.91 0.06
Q(multiple) NA 19275.64 16.10 0.04
Q(for-G) NA 26.14 22.59 0.04
Q(compose) NA 3.17 1.52 0.14

Time unit is millisecond.

The first group consists of relatively simple queries which
do not generate correlated subqueries even if we naively
generate SQL queries (hence we do not need the Stage 3 op-
timization for these queries). We have seven queries in this
group (the upper half of Table 1).Q(simple) andQ(getSales)
are the ones in Sections 2.1 and 6.1, respectively, and Q(д2 ◦
f ◦ д1) is an instance of the pattern д2 ◦ f ◦ д1 in Sec-
tion 2.2.Q(getCount) performs grouping twice by nested G-
operators,Q(abstraction) combines lambda abstraction and
a G-operator, Q(predicate) groups the data using the pred-
icate given as the argument of the query, and Q(getScore)
used nested data structures as intermediate data in the com-
putation with grouping.
The second group consists of queries that handle corre-

lated subqueries, which need all of Stage 1 through 3 opti-
mizations to optimize. There are four queries in this group
(the lower half of Table 1).Q(getQty) is the one in Section 6.1,
Q(multiple) is a query in which a table and the G-operator
are mixed in the input of each for-constructor,Q(for-G) has
the G-operator in the output of the for-constructor and is
translated to a SQL query with correlated subqueries, and
Q(compose) combines two queries with grouping.

Table 1 shows the execution time of SQL queries for three
cases: LINQ (the first column), Quelg without optimization
(the second), andQuelgwith optimization (the third). The last
column (Trans) shows the time for transforming queries by
the method in the present paper. The time unit is millisecond.
In the table, NA (not available) means the query cannot be
executed, and Av (avalanche) means that the query caused
the query avalanche (N + 1-query) problem.

Note that the time for transforming queries ismuch shorter
than the execution time, and is negligible. This is as ex-
pected, as our transformation rules are relatively simple as
program transformations. This is a preferable result, since we
may have to generate SQL queries dynamically in language-
integrated query (while executing our high-level code in F#

60

http://logic.cs.tsukuba.ac.jp/~rui/quelg_opt/example.html

GPCE ’20, November 16–17, 2020, Virtual, USA Rui Okura and Yukiyoshi Kameyama

or other programming languages), and the time for code
generation matters for such cases.

We compare Microsoft’s LINQ and our methods. LINQ suc-
cessfully generated and executed three queries only. There
are two reasons for this. First, LINQ does not transform
queries with grouping, hence a query with grouping which
has nested control structures causes the N + 1-query prob-
lem. In this experiment, the sizes of input tables are 500
or 1000, hence approximately 500 or 1000 SQL queries are
generated and sent to SQL processors, which needs a huge
amount of time (results marked with Av). The second rea-
son is that LINQ does not support the LATERAL clause, and
queries with correlated subqueries cannot be generated (re-
sults marked with NA).
On the other hand, simple queries such as Q(simple),

Q(getCount), and Q(abstraction) run as fast as our opti-
mized one, since they do not need normalization or the LAT-
ERAL clause. Our un-optimized result (the second column)
sometimes performs worse than LINQ, since we decomposed
a single query, which increases the complexity of queries,
and if no normalization is needed, the decomposition (with-
out optimization) has a bad effect on performance.
We then compare the performance of our method with

and without optimizations. For the queries from Q(simple)
to Q(getScore) (simpler queries), our optimization does not
have a big impact on the execution time even though our op-
timization succeeded in reducing the size of generate queries.
This can be explained by the fact that the query optimizer in
PostgreSQL improves the performance of redundant queries
before our optimization.
For the queries Q(getQty) and Q(multiple), which use

grouping, nested control structures, and generate correlated
subqueries, our optimization has shown great improvements
on performance with the ratio from 15% to 1097%. The ra-
tio varies from one example to another, however, a similar
improvement has been observed as long as we have tested.
These results are in favor of our work.

Optimization for correlated subqueries is a big issue in
database studies, which is beyond the scope of this paper, but
we think that our program-transformation (and program-
generation) approach is beneficial to study the issue when
the target language contains grouping, as we can make use
of the standard technique for program transformations.

Finally we mention the size of generated queries which is
not on the table. For all cases, the size of generated queries
was reduced by our optimization from 33% to 67%, where
we measured the size of queries by the number of SELECT
statements in the query. Query size does not matter for small
queries, but it sometimes matters since many database en-
gines have the upper limit on the number of subqueries or of
query size, and the program-transformation approach may
occasionally generate large queries. Hence, the smaller size
of queries is preferable even if the performance remains the
same.

The experiments we have conducted use relatively small
queries, and thorough experiments using larger examples
from practical applications are left for future work.

8 Conclusion
Language-integrated query reduces the impedancemismatch
problem, and provides high-level abstractions to program-
mers when they write database queries. Cooper’s influential
paper has the title “The Script-Writer’s Dream: How toWrite
Great SQL in Your Own Language, and Be Sure It Will Suc-
ceed” which suggests us that writing a SQL query in your
own, favorite programming language is a dream of script-
writers. The “dream” does not come truewithout cost; despite
many researchers’ efforts, transforming a query with group-
ing and aggregation into an efficient SQL query has been an
open problem for years. In our previous work, we solved this
problem when the target SQL allows nested control struc-
tures (subqueries), but their solution has another problem of
excessively large queries and their poor performance.

This paper solves the problem by re-organizing the query
to obtain a smaller query with fewer control structures. The
result of our experiments is encouraging; SQL queries gen-
erated by our method are smaller and outperforms those
generated by Microsoft’s LINQ, and one by our previous
work.

Research on language-integrated query is still a hot topic.
For example, Kiselyov et al. has proposed a technique to
cover the ORDER BY clause in language-integrated query [7].
Ricciotti et al. proved strong normalization for both homo-
geneous and heterogeneous queries [11].
Let us state future work other than those already men-

tioned in this paper.
The next step of the present work is to give an efficient im-

plementation of the program transformation. If we generate
SQL queries only statically, the time for the transformation
does not matter, however, when we dynamically generate
SQL queries in language-integrated query the transforma-
tion time matters. Formal verification of our transformation
for suitable semantics is also an important remaining work.
From the practical point of view, extending the source

language Quelg to cover a larger subset of SQL than the
present one is an interesting topic. In this work, we allow
subqueries to appear in the FROM or SELECT clause, but
subqueries must not appear in, for instance, the WHERE
clause in this study. Classic database theory investigated
such subqueries, and we hope to combine our results with
them as future work.

Acknowledgements. We would like to thank anonymous
reviewers for constructive comments. The second author
is supported in part by JSPS Grant-in-Aid for Scientific Re-
search (B) No. 18H03218 and No. 17H01724A.

61

ReorganizingQueries with Grouping GPCE ’20, November 16–17, 2020, Virtual, USA

References
[1] James Cheney, Sam Lindley, and Philip Wadler. 2013. A practical

theory of language-integrated query. In ACM SIGPLAN International
Conference on Functional Programming, ICFP’13, Boston, MA, USA -
September 25 - 27, 2013. 403–416. https://doi.org/10.1145/2500365.
2500586

[2] James Cheney, Sam Lindley, and Philip Wadler. 2014. Language-
integrated query using comprehension syntax: state of the art, open
problems, and work in progress. Technical Report. http://popl.mpi-
sws.org/2014/dcp2014/cheney.pdf, (Accessed on Oct 2020).

[3] Ezra Cooper. 2009. The Script-Writer’s Dream: How to Write Great
SQL in Your Own Language, and Be Sure It Will Succeed. In Database
Programming Languages - DBPL 2009, 12th International Symposium,
Lyon, France, August 24, 2009. Proceedings. 36–51. https://doi.org/10.
1007/978-3-642-03793-1_3

[4] Ezra Cooper, Sam Lindley, Philip Wadler, and Jeremy Yallop. 2007.
Links: Web Programming Without Tiers. In Formal Methods for Com-
ponents and Objects, Frank S. de Boer, Marcello M. Bonsangue, Susanne
Graf, and Willem-Paul de Roever (Eds.). Springer Berlin Heidelberg,
Berlin, Heidelberg, 266–296.

[5] Torsten Grust, Manuel Mayr, Jan Rittinger, and Tom Schreiber. 2009.
FERRY: Database-Supported Program Execution. In Proceedings of
the 2009 ACM SIGMOD International Conference on Management of
Data (Providence, Rhode Island, USA) (SIGMOD ’09). Association for
Computing Machinery, New York, NY, USA, 1063–1066. https://doi.
org/10.1145/1559845.1559982

[6] Torsten Grust, Jan Rittinger, and Tom Schreiber. 2010. Avalanche-Safe
LINQ Compilation. PVLDB 3, 1 (2010), 162–172. https://doi.org/10.
14778/1920841.1920866

[7] Oleg Kiselyov and Tatsuya Katsushima. 2017. Sound and Efficient
Language-Integrated Query - Maintaining the ORDER. In Program-
ming Languages and Systems - 15th Asian Symposium, APLAS 2017,

Suzhou, China, November 27-29, 2017, Proceedings. 364–383. https:
//doi.org/10.1007/978-3-319-71237-6_18

[8] Erik Meijer, Brian Beckman, and Gavin M. Bierman. 2006. LINQ:
reconciling object, relations and XML in the .NET framework. In
Proceedings of the ACM SIGMOD International Conference on Man-
agement of Data, Chicago, Illinois, USA, June 27-29, 2006. 706. https:
//doi.org/10.1145/1142473.1142552

[9] Atsushi Ohori and Katsuhiro Ueno. 2011. Making Standard ML a
Practical Database Programming Language. In Proceedings of the 16th
ACM SIGPLAN International Conference on Functional Programming
(Tokyo, Japan) (ICFP ’11). Association for Computing Machinery, New
York, NY, USA, 307–319. https://doi.org/10.1145/2034773.2034815

[10] Rui Okura and Yukiyoshi Kameyama. 2020. Language-Integrated
Query with Nested Data Structures and Grouping. In Functional and
Logic Programming, Keisuke Nakano and Konstantinos Sagonas (Eds.).
Springer International Publishing, Cham, 139–158.

[11] Wilmer Ricciotti and James Cheney. 2020. Strongly Normalizing
Higher-Order Relational Queries. In 5th International Conference on
Formal Structures for Computation and Deduction (FSCD 2020) (Leibniz
International Proceedings in Informatics (LIPIcs), Vol. 167), Zena M. Ari-
ola (Ed.). Schloss Dagstuhl–Leibniz-Zentrum für Informatik, Dagstuhl,
Germany, 28:1–28:22. https://doi.org/10.4230/LIPIcs.FSCD.2020.28

[12] Kenichi Suzuki, Oleg Kiselyov, and Yukiyoshi Kameyama. 2016. Finally,
safely-extensible and efficient language-integrated query. In Proceed-
ings of the 2016 ACM SIGPLAN Workshop on Partial Evaluation and
Program Manipulation, PEPM 2016, St. Petersburg, FL, USA, January 20
- 22, 2016. 37–48. https://doi.org/10.1145/2847538.2847542

[13] Val Tannen, Peter Buneman, and Limsoon Wong. 1992. Naturally
Embedded Query Languages. In Database Theory - ICDT’92, 4th Inter-
national Conference, Berlin, Germany, October 14-16, 1992, Proceedings.
140–154. https://doi.org/10.1007/3-540-56039-4_38

62

https://doi.org/10.1145/2500365.2500586
https://doi.org/10.1145/2500365.2500586
http://popl.mpi-sws.org/2014/dcp2014/cheney.pdf
http://popl.mpi-sws.org/2014/dcp2014/cheney.pdf
https://doi.org/10.1007/978-3-642-03793-1_3
https://doi.org/10.1007/978-3-642-03793-1_3
https://doi.org/10.1145/1559845.1559982
https://doi.org/10.1145/1559845.1559982
https://doi.org/10.14778/1920841.1920866
https://doi.org/10.14778/1920841.1920866
https://doi.org/10.1007/978-3-319-71237-6_18
https://doi.org/10.1007/978-3-319-71237-6_18
https://doi.org/10.1145/1142473.1142552
https://doi.org/10.1145/1142473.1142552
https://doi.org/10.1145/2034773.2034815
https://doi.org/10.4230/LIPIcs.FSCD.2020.28
https://doi.org/10.1145/2847538.2847542
https://doi.org/10.1007/3-540-56039-4_38

	Abstract
	1 Introduction
	2 Examples
	2.1 First Example
	2.2 Second Example

	3 The Language with Grouping
	3.1 Language
	3.2 Type System
	3.3 Normalization

	4 Reorganizing Queries
	4.1 Intermediate Representation
	4.2 Reducing Query Size
	4.3 Eliminating Correlated Subquery
	4.4 Summary of Our Transformation

	5 Translation to SQL
	6 Involved Examples
	6.1 Query with Nested Data Structure
	6.2 Query with Correlated Subquery

	7 Performance
	8 Conclusion
	References

