
Example dependent temporal spec.:

Φ𝜇 ≡ 𝜆𝑥 ∈ Σ∗. 𝑥 ∈ 𝐒𝐞𝐧𝐝𝑛

Φ𝜈 ≡ 𝜆𝑥 ∈ Σ𝜔. 𝑥 ∈ 𝐒𝐞𝐧𝐝𝜔

¬𝑝1

Dependent Temporal Effects and Fixpoint Logic for Verification
Yoji Nanjo1, Hiroshi Unno1, Eric Koskinen2, Tachio Terauchi3

1University of Tsukuba 2Stevens Institute of Technology 3Waseda University

Our Goal: Temporal Verification of Higher-Order Functional Programs

𝑒 ⊨ (Φ𝜇, Φ𝜈)

(Φ1
𝜇
, Φ1

𝜈) (Φ2
𝜇
, Φ2

𝜈)⇒

3. implication checking?

2. over-approximation

1. fixpoint predicates
generation

Send

𝑛 < 0 ∶ 𝐒𝐞𝐧𝐝, 𝐒𝐞𝐧𝐝, 𝐒𝐞𝐧𝐝, 𝐒𝐞𝐧𝐝, 𝐒𝐞𝐧𝐝,⋯ (infinite)
𝑛 = 0 ∶ 𝜖
𝑛 = 1 ∶ 𝐒𝐞𝐧𝐝
𝑛 = 2 ∶ 𝐒𝐞𝐧𝐝, 𝐒𝐞𝐧𝐝
⋯ the argument of send_msgs

• A type-and-effect system for dependent temporal verification
• A soundness proof of the type-and-effect system
• A fixpoint deductive system for reasoning about fixpoint predicates
• A soundness proof of the fixpoint deductive system

Tick

Enq

Deq

Φ𝜇 ≡ 𝜆𝑥 ∈ Σ∗. 𝑥 ≠ 𝜖 ⇒
#𝐓𝐢𝐜𝐤(𝑥)

#𝐃𝐞𝐪(𝑥)
= 1

where #𝑎(𝑥) is the number of occurrences of the event 𝑎 in the sequence 𝑥

Least Fixpoints

Formally, we introduce the relation 𝑋 ෤𝑥 ; 𝑝1; 𝑝2; 𝜓
′ ത↑ 𝜓 which means the well-founded relation 𝑝2 witnesses that 𝑝1(෤𝑥) implies

¬(𝜈𝑋𝜈 ෤𝑥 . 𝜓′ ∧ 𝜓)(෤𝑥) for any ෤𝑥

Our Contributions

Example functional program:

fixpoint predicates of e
fixpoint-free predicates

raise Send event

dependent temporal spec.
functional program

𝑒 ⊨ (Φ𝜇, Φ𝜈)
?functional program dependent temporal spec.

Φ𝜇: predicate on event sequences and program values that must be satisfied by
finite (i.e., terminating) event sequences produced by 𝑒
Φ𝜈: predicate on event sequences and program values that must be satisfied by
infinite (i.e., diverging) event sequences produced by 𝑒

Extend beyond (non-dependent) temporal specs. used in previous work

Enq, Enq, Tick, Tick, Deq, Deq
Enq, Tick, Deq, Enq, Tick, Deq
Enq, Enq, Tick, Tick, Deq, Deq, Enq, Tick, Deq

Example: amortized complexity analysis of an implementation of queues

1. Fixpoint Predicates Generation

predicate variable that relates the argument n and the finite sequence 𝑥

2. Over-Approximation

Greatest Fixpoints

𝑝1 𝑛, 𝑥 ∧ 𝑛 ≠ 0 ∧ 𝑥 = 𝐒𝐞𝐧𝐝 ⋅ 𝑥′ ⇒ 𝑝1(𝑛 − 1, 𝑥′ ∧ 𝑝2(𝑛, 𝑥, 𝑛 − 1, 𝑥′))

𝑋 𝑛, 𝑥 ; 𝑝1; 𝑝2; 𝑛 ≠ 0 ∧ 𝑥 = 𝐒𝐞𝐧𝐝 ⋅ 𝑥′ ത↑ 𝑋(𝑛 − 1, 𝑥′)

𝑋 𝑛, 𝑥 ; 𝑝1; 𝑝2; 𝑛 ≠ 0 ത↑ 𝑥 = 𝐒𝐞𝐧𝐝 ⋅ 𝑥′ ∧ 𝑋(𝑛 − 1, 𝑥′)

𝑋 𝑛, 𝑥 ; 𝑝1; 𝑝2; 𝑛 ≠ 0 ത↑ ∃𝑦. 𝑥 = 𝐒𝐞𝐧𝐝 ⋅ y ∧ 𝑋(𝑛 − 1, 𝑦)

𝑋 𝑛, 𝑥 ; 𝑝1; 𝑝2 ; ⊤ ത↑ 𝑛 ≠ 0 ∧ ∃𝑦. 𝑥 = 𝐒𝐞𝐧𝐝 ⋅ 𝑦 ∧ 𝑋(𝑛 − 1, 𝑦)

𝑒

fixpoint deductive system

type-and-effect system

(Φ1
𝜇
, Φ1

𝜈)functional program fixpoint predicates of e

compositionally analyze temporal effects of 𝑒 via typing rules

predicate variable that relates the argument n and the infinite sequence 𝑥

Φ1
𝜇
≡ 𝜆𝑥 ∈ Σ∗. (𝜇𝑋𝜇 . 𝐹(𝑋𝜇))(𝑛, 𝑥) Φ2

𝜇
≡ 𝜆𝑥 ∈ Σ∗. 𝑛 > 0 ∧ 𝑥 ∈ 𝐒𝐞𝐧𝐝𝑛

check that Φ2
𝜇

is a pre-fixpoint of the function 𝐹fixpoint predicate fixpoint-free predicate

Φ1
𝜈 ≡ 𝜆𝑥 ∈ Σ𝜔. (𝜈𝑋𝜈 𝑛, 𝑥 . 𝑛 ≠ 0 ∧ ∃𝑦. 𝑥 = 𝐒𝐞𝐧𝐝 ⋅ 𝑦 ∧ 𝑋𝜇 𝑛 − 1, 𝑦)(𝑛, 𝑥) Φ2

𝜈 ≡ 𝜆𝑥 ∈ Σ∗. 𝑛 < 0 ∧ 𝑥 ∈ 𝐒𝐞𝐧𝐝𝜔

fixpoint predicate fixpoint-free predicate

Φ1
𝜈

𝑝1

Overall Verification Flow

Send

Φ1
𝜇
≡ 𝜆𝑥 ∈ Σ∗.

(𝜇𝑋𝜇 𝑛, 𝑥 .
𝑛 = 0 ∧ 𝑥 = 𝜖 ∨

𝑛 ≠ 0 ∧ ∃𝑦. 𝑥 = 𝐒𝐞𝐧𝐝 ⋅ 𝑦 ∧ 𝑋𝜇 𝑛 − 1, 𝑦
)(𝑛, 𝑥)

Φ1
𝜈 ≡ 𝜆𝑥 ∈ Σ𝜔.

(𝜈𝑋𝜈 𝑛, 𝑥 . 𝑛 ≠ 0 ∧ ∃𝑦. 𝑥 = 𝐒𝐞𝐧𝐝 ⋅ 𝑦 ∧ 𝑋𝜈 𝑛 − 1, 𝑦)(𝑛, 𝑥)

𝐹 ≡ 𝜆𝑋. 𝜆 𝑛, 𝑥 . 𝑛 = 0 ∧ 𝑥 = 𝜖 ∨ 𝑛 ≠ 0 ∧ (∃𝑦. 𝑥 = 𝐒𝐞𝐧𝐝 ⋅ 𝑦 ∧ 𝑋(𝑛 − 1, 𝑦))

check that a given well-founded relation 𝑝2 witnesses that a given predicate 𝑝1 and Φ1
𝜈 are separated, and then return ¬𝑝1 as Φ2

𝜈

𝑝1 = 𝜆𝑥 ∈ Σ𝜔. 𝑛 ≥ 0 ∨ 𝑥 ∉ 𝐒𝐞𝐧𝐝𝜔, 𝑝2 = 𝜆 𝑛1, 𝑥1 , 𝑛2, 𝑥2 . 𝑛1 > 𝑛2 ≥ 0

Example derivation:The derivation rules (excerpt):

