Dependent Temporal Effects and Fixpoint Logic for Verification

Yoji Nanjo¹, Hiroshi Unno¹, Eric Koskinen², Tachio Terauchi³

¹University of Tsukuba ²Stevens Institute of Technology ³Waseda University

Our Goal: Temporal Verification of Higher-Order Functional Programs

```
functional program e \vdash (\Phi^{\mu}, \Phi^{\nu}) = dependent temporal spec.
\Phi^{\mu}: predicate on event sequences and program values that must be satisfied by
finite (i.e., terminating) event sequences produced by e
\Phi^{\nu}: predicate on event sequences and program values that must be satisfied by
infinite (i.e., diverging) event sequences produced by e
 Extend beyond (non-dependent) temporal specs. used in previous work
Example functional program:
                                          raise Send event
let rec send_msgs n =
  if n = 0 then ()
  else (event[Send]; send_msgs (n-1))
          n < 0: Send, Send, Send, Send, Send, ... (infinite)
          n=0:\epsilon
          n=1: Send
          n=2: Send, Send
           • • •
                                              the argument of send_msgs
Example dependent temporal spec.:
                       \Phi^{\mu} \equiv \lambda x \in \Sigma^*. x \in \mathbf{Send}^n
```

let rev l = let rec aux l acc = match l with [] -> acc | h::t -> event[Tick]; aux t (h::acc) in aux l [] let enqueue e (11,12) = event[Enq]; (11,e::12)let rec dequeue (11,12) = match 11 with e::l1' -> event[**Deq**]; (e, (l1', l2)) [] -> dequeue (rev 12, []) let rec loop (11,12) = if * then loop (enqueue 42 (11,12)) else if is_empty (11,12) then () else loop (snd (dequeue (11,12))) let main () = loop ([], []) Enq, Enq, Tick, Tick, Deq, Deq Enq, Tick, Deq, Enq, Tick, Deq Enq, Enq, Tick, Tick, Deq, Deq, Enq, Tick, Deq $\Phi^{\mu} \equiv \lambda x \in \Sigma^*. x \neq \epsilon \Rightarrow \frac{\#_{\text{Tick}}(x)}{\#_{\text{Deg}}(x)} = 1$

Example: amortized complexity analysis of an implementation of queues

where $\#_a(x)$ is the number of occurrences of the event a in the sequence x

Our Contributions

- A type-and-effect system for dependent temporal verification
- A soundness proof of the type-and-effect system
- A fixpoint deductive system for reasoning about fixpoint predicates

 $\Phi^{\nu} \equiv \lambda x \in \mathbf{Send}^{\omega}$

A soundness proof of the fixpoint deductive system

Overall Verification Flow

```
fixpoint deductive system

2. over-approximation

fixpoint predicates of e

(\Phi_1^\mu, \Phi_1^\nu)
(\Phi_2^\mu, \Phi_2^\nu)
1. fixpoint predicates generation
e \models (\Phi^\mu, \Phi^\nu)
dependent temporal spec.
```

1. Fixpoint Predicates Generation

let rec send_msgs n =

if n = 0 then ()

compositionally analyze temporal effects of e via typing rules

functional program -e $(\Phi_1^{\mu}, \Phi_1^{\nu})$ fixpoint predicates of e

```
else (event[Send]; send_msgs (n-1)) \Phi_1^{\mu} \equiv \lambda x \in \Sigma^*.
(\mu X_{\mu}(n,x).) \left( \begin{array}{c} n = 0 \land x = \epsilon \lor \\ n \neq 0 \land (\exists y. x = \mathbf{Send} \cdot y \land X_{\mu}(n-1,y)) \end{array} \right) ) (n,x)
```

predicate variable that relates the argument n and the finite sequence x

 $\Phi_1^{\nu} \equiv \lambda x \in \Sigma^{\omega}.$ $(\nu X_{\nu}(n,x) \quad n \neq 0 \land (\exists y. \ x = \mathbf{Send} \cdot y \land X_{\nu}(n-1,y)))(n,x)$

predicate variable that relates the argument n and the infinite sequence x

2. Over-Approximation

Least Fixpoints

fixpoint predicate

 $F \equiv \lambda X. \lambda(n, x). n = 0 \land x = \epsilon \lor n \neq 0 \land (\exists y. x = \mathbf{Send} \cdot y \land X(n-1, y))$ check that Φ_2^{μ} is a *pre-*fixpoint of the function F

check that Ψ_2^* is a *pre-*fixpoint of the function

$$\Phi_1^{\mu} \equiv \lambda x \in \Sigma^*. (\mu X_{\mu}. F(X_{\mu}))(n, x)$$

$$\Phi_2^{\mu} \equiv \lambda x \in \Sigma^*. n > 0 \land x \in \mathbf{Send}^n$$

fixpoint-free predicate

Greatest Fixpoints

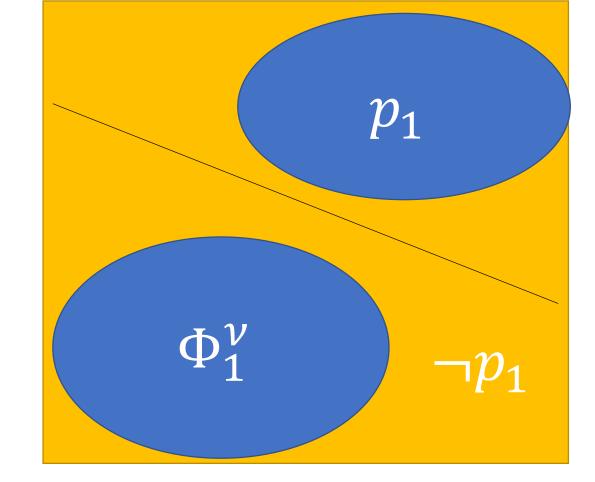
check that a given well-founded relation p_2 witnesses that a given predicate p_1 and Φ_1^{ν} are separated, and then return $\neg p_1$ as Φ_2^{ν}

fixpoint predicate

 $\Phi_1^{\nu} \equiv \lambda x \in \Sigma^{\omega}.(\nu X_{\nu}(n,x).n \neq 0 \land (\exists y.x = \mathbf{Send} \cdot y \land X_{\mu}(n-1,y)))(n,x)$

fixpoint-free predicate $\Phi_2^{\nu} \equiv \lambda x \in \Sigma^*. n < 0 \land x \in \mathbf{Send}^{\omega}$

 $p_1 = \lambda x \in \Sigma^{\omega}. n \ge 0 \lor x \notin \mathbf{Send}^{\omega}, p_2 = \lambda(n_1, x_1, n_2, x_2). n_1 > n_2 \ge 0$



Formally, we introduce the relation $X(\tilde{x})$; p_1 ; p_2 ; $\psi' \uparrow \psi$ which means the well-founded relation p_2 witnesses that $p_1(\tilde{x})$ implies $\neg(\nu X_{\nu}(\tilde{x}), \psi' \land \psi)(\tilde{x})$ for any \tilde{x}

The derivation rules (excerpt):

$$\models (p_1(\widetilde{x}) \land \psi) \Rightarrow (\psi_1' \lor \psi_2') \quad fv(\psi_i') \subseteq \{\widetilde{x}\} \quad X \notin fpv(\psi_i')$$

$$X(\widetilde{x}); p_1; p_2; \psi \land \psi_i' \uparrow \psi_i \quad (i = 1, 2)$$

 $X(\widetilde{x}); p_1; p_2; \psi \uparrow \psi_1 \wedge \psi_2$

 $X(\widetilde{x}); p_1; p_2; \psi' \uparrow [x'/x] \psi$ $x' \notin fv(\psi') \cup fv(\psi) \cup \{\widetilde{x}\} \cup fv(p_1) \cup fv(p_2)$ $X(\widetilde{x}); p_1; p_2; \psi' \uparrow \exists x. \psi$

Example derivation:

$$\frac{p_{1}(n,x) \land n \neq 0 \land x = \mathbf{Send} \cdot x' \Rightarrow (p_{1}(n-1,x') \land p_{2}(n,x,n-1,x'))}{X(n,x); p_{1}; p_{2}; n \neq 0 \land x = \mathbf{Send} \cdot x' \stackrel{?}{\uparrow} X(n-1,x')}$$

$$\frac{X(n,x); p_{1}; p_{2}; n \neq 0 \stackrel{?}{\uparrow} x = \mathbf{Send} \cdot x' \land X(n-1,x')}{X(n,x); p_{1}; p_{2}; n \neq 0 \stackrel{?}{\uparrow} \exists y. x = \mathbf{Send} \cdot y \land X(n-1,y)}$$

$$\frac{X(n,x); p_{1}; p_{2}; n \neq 0 \stackrel{?}{\uparrow} \exists y. x = \mathbf{Send} \cdot y \land X(n-1,y)}{X(n,x); p_{1}; p_{2}; \stackrel{?}{\uparrow} n \neq 0 \land \exists y. x = \mathbf{Send} \cdot y \land X(n-1,y)}$$