Dependent Temporal Effects and Fixpoint Logic for Verification

Yoji Nanjo?!, Hiroshi Unno?, Eric Koskinen?, Tachio Terauchi?
lUniversity of Tsukuba %Stevens Institute of Technology 3Waseda University

Our Goal: Temporal Verification of Higher-Order Functional Programs

Example: amortized complexity analysis of an implementation of queues

g,
i - dependent temporal spec.
{ tunctional program Le = (CD“» CDV) 4 P P P J let rev 1 = let rec aux 1 acc = match 1 with

dH: predicate on event sequences and program values that must be satisfied by | [1 -> acc | h::t -> event[Tick]; aux t (h::acc)
finite (i.e., terminating) event sequences produced by e in aux 1 []

dV: predicate on event sequences and program values that must be satisfied by let enqueue e (11,12) = event[Engl; (11,e::12)
infinite (i.e., diverging) event sequences produced by e

. . let rec dequeue (11,12) = match 11 with
Extend beyond (non-dependent) temporal specs. used in previous work e::11" -> event[Deql; (e, (11', 12))

Example functional program: (aise Send event } [1 -> dequeue (rev 12, [1)
let rec send_msgs n j/4§§ﬁﬁﬁ:%::;//// let rec loop (11,12) =
1f n = 0 then () 1f * then loop (enqueue 42 (11,12))
else (event[Send]; send_msgs (n-1)) else if is_empty (11,12) then ()
n < 0 : Send, Send, Send, Send, Send, --- (infinite) else loop (snd (dequeue (11,12)))
n=0:c¢€ let main () = loop ([1, [1)

n=1:Send
n=2:Send, Send

Eng, Enq, Tick, Tick, Deq, Deq
Eng, Tick, Deq, Enq, Tick, Deq
Eng, Enq, Tick, Tick, Deq, Deq, Enq, Tick, Deq

the argument of send_msgs

Example dependent temporal spec.: (x
Oly EAxEZ*.xESen(QD// Pl = IxEeEX . x #€> TICk((x)) =1
dV = Ax € X¥.x € Send? Deq

where #,(x) is the number of occurrences of the event a in the sequence x

1. Fixpoint Predicates Generation

Our Contributions

* Atype-and-effect system for dependent temporal verification compositionally analyze temporal effects of e via typing rules
A soundness proof of the type-and-effect system

* Afixpoint deductive system for reasoning about fixpoint predicates functional program

A soundness proof of the fixpoint deductive system

- IO fixpoint predicates of e

Overall Verification Flow let rec send_msgs n =

ff if n =0 then (O
/[type-and-e ect system — . else (event[Send]; send_msgs (n-1))

fixpoint predicates of e

(P7, P1)

2. over-approximation

uX,(n,
fixpoint-free predicates (X

))(n,)
(P, P3)

1. fixpoint predicates —
S E : I H7 3. implication checking 1 =Ax € L%,
generation (vX,(n,x)fn #0A (3y. x =Send -y AX,(n — 1,y)))(n, x)
e E (PH, PV —~
functional program () dependent temporal SIO {

predicate variable that relates the argument n and the infinite sequence x}
2. Over-Approximation

n=0Ax=¢€V

Least Fixpoints
F=2X.2n,x)).n=0Ax=eVn+0A(3y.x=Send-yAX(n—1,y))

nw - £ - 1 V
fixpoint predicate check that @, is a pre-fixpoint of the function F fixpoint-free predicate
Py = Ax € T%. (uX,,. F (X)) (n, x) ®S =Ax €Z*.n>0Ax € Send”

Greatest Fixpoints

check that a given well-founded relation p, witnesses that a given predicate p; and ®7 are separated, and then return —p, as @3

fixpoint predicate fixpoint-free predicate

1 =Ax eX? (vX,(n,x).n#=0A (Ely.x =Send - yAX,(n — 1,y)))(n,x) ; EAx €X' .n<0Ax € Send®

P1 = Ax € X%.n = 0Vvx & Sendw'pz — A(nlyxl)nZJxZ)'nl > n; = 0

Formally, we introduce the relation X (%); p1; p2; ¥’ T ¥ which means the well-founded relation p, witnesses that p; (¥) implies
-(vX,(X). Y AY)(X) forany X

0 The derivation rules (excerpt): Example derivation:
- () A)]](b()f):‘)p?&;:l}&a y&‘f‘;(j;) %i {—ﬂl 25{ £ fvihi) pi(nx)An#0Ax =Send-x"= (py(n—1,x") Ap,(n,x,n — 1,x"))
3 3 3 : 1 — 45 —
o I X(n,x);pippn#0Ax =Send-x" T X(n—1,x")

X(X);p1sp2: ¥ 11 A Y X(n,x);p;pun#0T x=Send-x' AX(n—1,x)

, i{(f);pl;pg;gbL? [x" [x]y X(,x);p;pn+0 1T Iy.x =Send-yAX(n—1,y)
x" ¢ fo(y") U fu(y) U {x} U fu(pr) U fu(p2) X(n,x);p1;p2; T T n#0A3y.x=Send-yAX(n—1,y)

X(x);p1;p2; ¥ 1 AxY

