プログラム言語論 第4週 補足資料 亀山幸義, 2009/05/11

1 miniML の構文を定義する。

変数 x と定数 c は、miniC と同じ。

$$\overrightarrow{\mathrm{rt}}\,e,f ::= x \mid c \mid e+f \mid e=f \mid e>f \mid \mathrm{print}\;e$$

$$\mid \mathrm{if}\;e\;\mathrm{then}\;e\;\mathrm{else}\;e \mid \mathrm{fun}\;x \to e \mid e\;f$$

$$\mid \mathrm{let}\;x=e\;\mathrm{in}\;f \mid \mathrm{let}\;\mathrm{rec}\;x=e\;\mathrm{in}\;f$$

ラムダ式 (1 引数の関数):

- f(x) = e となる関数 f のことを $\lambda x.e$ と書く。
- $\lambda x.e$ では、x は局所変数 (外からは見えない変数)。
- $(\lambda x.e)(x) = e$ が成立する。
- ML の一種である OCaml 言語では、 $\lambda x.e$ を fun $x \rightarrow e$ と書く。

関数適用 (関数呼出し):

- e₁ e₂ と、ただ並べて書く。(括弧をつけてもよい。)
- ullet e_1 の計算結果が、関数 $\mathrm{fun}\;x$ -> e_0 になったら、その関数を、 e_2 という引数で呼び出し、その結果を返す。
- (fun x -> x + 1)(2 + 3) は、6 になる。

let $\vec{\pi}$ (let x = e in e')

- x = e という (局所的な) 環境のもとで e' を計算する。
- (fun *x* -> *e'*)*e* と同じ計算になる。

let $\operatorname{rec} \vec{\pi}$ (let $\operatorname{rec} f = e \text{ in } e'$)

e' の中で f を使ってよい (再帰呼び出し)。

miniML の意味を定義する。

「式」しかない(「文」はない)のと、「状態変化」がないので、miniC の意味論よりだいぶ簡単になる。

2.1 値

まず、計算結果を意味する「値」(あたい、value)を以下のように定義する。

値
$$v := x \mid c \mid (\text{fun } x \rightarrow e, \sigma)$$

ここで、 $(\operatorname{fun} x \to e, \sigma)$ というのが不思議な値である。関数型言語では、計算結果が「関数」になることがあり、それを後で使えるようにするため、関数本体と、その関数を計算したときの環境とをセットにしたものをクロージャ $(\operatorname{closure})$ と呼ぶ。クロージャがなぜ必要か、単純に、関数 $\operatorname{fun} x \to e$ を計算結果としては駄目なのか、については、講義を参照のこと。

2.2 式の意味

環境 σ のもとで、式 e を計算した結果を $\sigma(e)$ と書く。これを e に関する場合分けで定義する。

- e = x のとき: $\sigma(e)$ は、 σ における x の値である。
- e = c のとき: $\sigma(e) = c$ である。
- $e = e_1 + e_2$ のとき: $\sigma(e) = \sigma(e_1) + \sigma(e_2)$ である。
- $e = \text{if } e_1 \text{ then } e_2 \text{ else } e_3 \text{ のとき} : \sigma(e_1) = \text{true obs}, \ \sigma(e) = \sigma(e_1) \text{ で、} \sigma(e_1) = \text{false obs}, \ \sigma(e) = \sigma(e_2)$ である。それ以外のとき、 $\sigma(e)$ は値を持たない。
- ullet $e=(\mathtt{let}\ x=e_1\ \mathtt{in}\ e_2)$ のとき、 $e=(\mathtt{fun}\ x woheadrightarrow e_2)e_1$ と見なして計算する。($\mathtt{let}\ \mathtt{rec}\ \mathtt{loc}$ 、少し面倒)
- \bullet $e = \text{fun } x \rightarrow e_1$ のとき: $\sigma(e) = (\text{fun } x \rightarrow e_1, \sigma)$ である。
- $e = e_1 \ e_2$ のとき:
 - $\sigma(e_1)=(ext{fun }x woheadrightarrow e_3,\;\sigma_3)$ かつ、 $\sigma(e_2)=v$ となるとき: $\sigma_4=((x=v)\oplus\sigma_3)$ とおいた上で、 $\sigma(e)=\sigma_4(e_3)$ である。
 - 上記のようにならないとき、 $\sigma(e)$ は値を持たない。

以上。(print と let-rec の意味は省略した)

3 miniML のインタープリタ

インタープリタは、意味論をそのまま反映したプログラムである。miniC のインタープリタは、意味論が複雑なことに対応して結構複雑であった。(文や式の定義を相互再帰的に呼んでいた。) 一方、miniML の方は、意味論が非常にすっきりしているので、対応してインタープリタもだいぶ簡単である。ほとんど上記の定義をそのまま書くだけ、といった感じになる。詳細は、演習の際に学習してほしい。

4 miniML の拡張

演習で使う miniML は、ここまで述べたものに、さらに「直積」を追加したものである。 式の構文の追加:

式
$$e, f ::= \cdots \mid (e, f) \mid \texttt{fst } e \mid \texttt{snd } e$$

直感的には、(e,f) は e と f の計算結果 v_1,v_2 を「対 (つい、ペア)」にしたデータのことである。(要素数 2 の配列、あるいは、C 言語の struct 型で 2 要素の構造体を作ったときのデータと似ている。)

fst e と snd e は、それぞれ、対の第 1、第 2 要素である。

式の意味の追加:

- $e = (e_1, e_2)$ のとき: $\sigma(e) = (\sigma(e_1), \sigma(e_2))$ である。
- ullet e= fst e_1 のとき: $\sigma(e_1)=(v_2,v_3)$ ならば、 $\sigma(e)=v_2$ であり、それ以外のときは、値を持たない。
- ullet $e= ext{snd}$ e_1 のとき: $\sigma(e_1)=(v_2,v_3)$ ならば、 $\sigma(e)=v_3$ であり、それ以外のときは、値を持たない。