『離散構造』4章(関係)の演習問題 解答例 (海野)

 $\mathcal{N}_n = \{x \in \mathcal{N} \mid 0 \le x < n\}$ とする。 \mathcal{N}_{10} 上の 2 項関係 R_1, \dots, R_3 を以下のように定める。

$$x R_1 y \Leftrightarrow y = x + 1$$

 $x R_2 y \Leftrightarrow x^2 \leq y$
 $x R_3 y \Leftrightarrow x は y の約数$

ただし、任意の自然数は0の約数とする。[2013/11/14 「0は任意の自然数の約数」と間違っていたのを修正]

問題 1 (関係の性質)

(a) R_1 が反射的、対称的、推移的、反対称的であるかをそれぞれ答えよ。

答. $0 R_1 0$ でないので R_1 は反射的でない。 $0 R_1 1$ だが $1 R_1 0$ ではないので R_1 は対称的でない。 $0 R_1 1$ かつ $1 R_1 2$ だが $0 R_1 2$ ではないので R_1 は推移的でない。 $x R_1 y$ かつ $y R_1 x$ となる $x, y \in \mathcal{N}_{10}$ は存在しないので R_1 は反対称的である。

(b) R_2 について同様のことを答えよ。

(c) R_3 について同様のことを答えよ。

答. すべての $x \in \mathcal{N}_{10}$ について、x は x 自身の約数なので R_3 は反射的である。2 は 4 の約数だが、4 は 2 の約数ではないので R_3 は対称的でない。すべての $x,y,z \in \mathcal{N}_{10}$ について、x が y の約数かつ y が z の約数ならば、x は z の約数でもある。したがって R_3 は推移的である。すべての $x,y \in \mathcal{N}_{10}$ について、x が y の約数かつ y が x の約数ならば x = y である。したがって、 R_3 は反対称的である。

	反射的	対称的	推移的	反対称的
R_1				✓
R_2			✓	✓
R_3	✓		✓	✓

問題 2 (関係の合成)

(a) $R_1 \circ R_1$ の要素をすべて書き下しなさい。

$$R_1 = \{\langle 0, 1 \rangle, \langle 1, 2 \rangle, \langle 2, 3 \rangle, \langle 3, 4 \rangle, \langle 4, 5 \rangle, \langle 5, 6 \rangle, \langle 6, 7 \rangle, \langle 7, 8 \rangle, \langle 8, 9 \rangle\}$$

$$R_1 \circ R_1 = \{\langle 0, 2 \rangle, \langle 1, 3 \rangle, \langle 2, 4 \rangle, \langle 3, 5 \rangle, \langle 4, 6 \rangle, \langle 5, 7 \rangle, \langle 6, 8 \rangle, \langle 7, 9 \rangle\}$$

(b) R₂ ∘ R₂ の要素をすべて書き下しなさい。答. R₂ と R₂ ∘ R₂ は以下のようになる。

$$R_{2} = \{\langle 0, 0 \rangle, \langle 0, 1 \rangle, \dots, \langle 0, 9 \rangle,$$

$$\langle 1, 1 \rangle, \langle 1, 2 \rangle, \dots, \langle 1, 9 \rangle,$$

$$\langle 2, 4 \rangle, \langle 2, 5 \rangle, \dots, \langle 2, 9 \rangle,$$

$$\langle 3, 9 \rangle \}$$

$$R_{2} \circ R_{2} = \{\langle 0, 0 \rangle, \langle 0, 1 \rangle, \dots, \langle 0, 9 \rangle,$$

$$\langle 1, 1 \rangle, \langle 1, 2 \rangle, \dots, \langle 1, 9 \rangle \}$$

(c) R₃ ∘ R₂ の要素をすべて書き下しなさい。答. R₃ と R₃ ∘ R₂ は以下のようになる。

$$R_3 = \{\langle 0,0 \rangle, \langle 1,0 \rangle, \dots, \langle 9,0 \rangle,$$
 $\langle 1,1 \rangle,$
 $\langle 1,2 \rangle, \langle 2,2 \rangle,$
 $\langle 1,3 \rangle, \langle 3,3 \rangle,$
 $\langle 1,4 \rangle, \langle 2,4 \rangle, \langle 4,4 \rangle,$
 $\langle 1,5 \rangle, \langle 5,5 \rangle,$
 $\langle 1,6 \rangle, \langle 2,6 \rangle, \langle 3,6 \rangle, \langle 6,6 \rangle,$
 $\langle 1,7 \rangle, \langle 7,7 \rangle,$
 $\langle 1,8 \rangle, \langle 2,8 \rangle, \langle 4,8 \rangle, \langle 8,8 \rangle,$
 $\langle 1,9 \rangle, \langle 3,9 \rangle, \langle 9,9 \rangle\}$
 $R_3 \circ R_2 = \{\langle x,y \rangle \in \mathcal{N}_{10} \times \mathcal{N}_{10} \mid \exists z(x \bowtie z \circ h) \otimes h \wedge z^2 \leq y)\}$
 $\supset \{\langle x,y \rangle \in \mathcal{N}_{10} \times \mathcal{N}_{10} \mid x \bowtie 0 \circ h \otimes h \wedge 0 \leq y\}$
 $= \mathcal{N}_{10} \times \mathcal{N}_{10}$

 $R_3 \circ R_2 \subset \mathcal{N}_{10} \times \mathcal{N}_{10}$ でもあるので、 $R_3 \circ R_2 = \mathcal{N}_{10} \times \mathcal{N}_{10}$ である。

問題 **3** [2013/11/14 \mathcal{N}_{10} となっていたのを $\mathcal{N}_{10} \times \mathcal{N}_{10}$ に修正]

(a) R_1 を含む \mathcal{N}_{10} 上の 2 項関係のうち、推移的であり \emptyset とも $\mathcal{N}_{10} \times \mathcal{N}_{10}$ とも異なるものがあれば求めなさい。

答. $x R y \Leftrightarrow x < y$ のように 2 項関係 R を定義する。 $\forall x, y \in \mathcal{N}_{10}(y = x + 1 \Rightarrow x < y)$ なので $R_1 \subset R$ である。 また、すべての $x, y, z \in \mathcal{N}_{10}$ について、x < y かつ y < z ならば x < z なので R は推移的である。

 R_1 を含み推移的である R のような関係のうち、最小のものを R_1 の推移閉包 (transitive closure) という。実は、R は R_1 の推移閉包になっている。(R が最小であることの証明はここでは省略。)

 かつ y R x だと仮定する。R の定義より、(x R_2 $y \lor x = y) \land (y$ R_2 $x \lor y = x)$ が成り立つ。この条件は x R_2 $y \land y$ R_2 $x \lor x = y$ を含意するので、 R_2 が反対称的であることも使えば、x = y であることが導ける。したがって、R は反対称的である。以上より、R が半順序であることが示せた。(ちなみに、 \leq でも題意を満たす。)

このRや \leq のような R_2 を含み反射的である関係のうち、最小のものを R_2 の反射閉包 (reflexive closure) という。実は、R は R_2 の反射閉包になっている。(R が最小であることの証明はここでは省略。) 一方、 \leq は、最小であるという条件を満たさないので R_2 の反射閉包ではない。実際、 $\forall x,y \in \mathcal{N}_{10}(x R y \Rightarrow x \leq y)$ だが、 $\forall x,y \in \mathcal{N}_{10}(x \leq y \Rightarrow x R y)$ は成り立たないので (x=2,y=3) が反例)、 \leq は R を真に包含する関係であり、最小ではない。

(c) R_3 を含む \mathcal{N}_{10} 上の 2 項関係のうち、同値関係であり $\mathcal{N}_{10} \times \mathcal{N}_{10}$ と異なるものがあれば求めなさい。 答. 関係 R は、同値関係であり、 $R_3 \subset R$ を満たすとする。 R_3 の定義より、 $\{\langle 0,0\rangle,\langle 1,0\rangle,\dots,\langle 9,0\rangle\}\subset R_3 \subset R$ である。すると、R は対称的なので、 $\{\langle 0,0\rangle,\langle 0,1\rangle,\dots,\langle 0,9\rangle\}\subset R$ も成り立つ。つまり、 $\forall x,y\in\mathcal{N}_{10}(x\ R\ 0\land 0\ R\ y)$ が成り立つ。ここで、R が推移的であることを使うと、 $\forall x,y\in\mathcal{N}_{10}(x\ R\ y)$ が導け、これは $\mathcal{N}_{10}\times\mathcal{N}_{10}\subset R$ を含意する。したがって、 R_3 を含む \mathcal{N}_{10} 上の同値関係で $\mathcal{N}_{10}\times\mathcal{N}_{10}$ と異なるものは存在しない。